Endocrine

, Volume 60, Issue 2, pp 308–316 | Cite as

PI3K/Akt/mTOR pathway involvement in regulating growth hormone secretion in a rat pituitary adenoma cell line

  • Carmelina Di Pasquale
  • Erica Gentilin
  • Simona Falletta
  • Mariaenrica Bellio
  • Mattia Buratto
  • Ettore degli Uberti
  • Maria Chiara Zatelli
Original Article
  • 178 Downloads

Abstract

Purpose

Insulin-like growth factor 1 (IGF1) controls growth hormone (GH) secretion via a negative feed-back loop that may disclose novel mechanisms possibly useful to control GH hyper-secretion. Our aim was to understand whether PI3K/Akt/mTOR pathway is involved in IGF1 negative feedback on GH secretion.

Methods

Cell viability, GH secretion, Akt, and Erk 1/2 phosphorylation levels in the rat GH3 cell line were assessed under treatment with IGF1 and/or everolimus, an mTOR inhitior.

Results

We found that IGF1 improves rat GH3 somatotroph cell viability via the PI3K/Akt/mTOR pathway and confirmed that IGF1 exerts a negative feedback on GH secretion by a transcriptional mechanism. We demonstrated that the negative IGF1 loop on GH secretion requires Akt activation that seems to play a pivotal role in the control of GH secretion. Furthermore, Akt activation is independent of PI3K and probably mediated by mTORC2. In addition, we found that Erk 1/2 is not involved in GH3 cell viability regulation, but may have a role in controlling GH secretion, independently of IGF1.

Conclusion

Our data confirm that mTOR inhibitors may be useful to reduce pituitary adenoma cell viability, while Erk 1/2 pathway may be considered as a useful therapeutic target to control GH secretion. Our results open the field for further studies searching for effective drugs to control GH hyper-secretion.

Keywords

Growth hormone Insulin-like growth factor 1 PI3K/Akt/mTOR pathway MAPK pathway 

Notes

Acknowledgements

We thank Novartis for providing Everolimus and NVP-BEZ235 pure substances.

Funding

This work was supported by grants from the Italian Ministry of Education, Research and University (FIRB RBAP11884M, RBAP1153LS), and Associazione Italiana per la Ricerca sul Cancro (AIRC) in collaboration with Laboratorio in rete del Tecnopolo “Tecnologie delle terapie avanzate” (LTTA) of the University of Ferrara. The funding sources had no involvement in study design, in the collection, analysis and interpretation of data, in the writing of the report and in the decision to submit the article for publication

Compliance with ethical standards

Conflict of interest

MCZ has received consultant fees from Novartis and Genzyme. EdU has received consultant fees from Novartis and grant support from Sanofi. The remaining authors declare that they have no competing interests.

References

  1. 1.
    N. Goldenberg, A. Barkan, Factors regulating growth hormone secretion in humans. Endocrinol. Metab. Clin. N. Am. 36, 37–55 (2007)CrossRefGoogle Scholar
  2. 2.
    M.D. Gahete, J. Córdoba-Chacón, Q. Lin, J.C. Brüning, C.R. Kahn, J.P. Castaño, H. Christian, R.M. Luque, R.D. Kineman, Insulin and IGF-I inhibit GH synthesis and release in vitro and in vivo by separate mechanisms. Endocrinology 154, 2410–2420 (2013).  https://doi.org/10.1210/en.2013-1261 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    A. Niiori-Onishi, Y. Iwasaki, N. Mutsuga, Y. Oiso, K. Inoue, H. Saito, Molecular mechanisms of the negative effect of insulin-like growth factor-I on growth hormone gene expression in MtT/S somatotroph cells. Endocrinology 140, 344–349 (1999)CrossRefPubMedGoogle Scholar
  4. 4.
    H. Sugihara, N. Emoto, H. Tamura, J. Kamegai, T. Shibasaki, S. Minami, I. Wakabayashi, Effect of insulin-like growth factor-I on growth hormone-releasing factor receptor expression in primary rat anterior pituitary cell culture. Neurosci. Lett. 276, 87–90 (1999)CrossRefPubMedGoogle Scholar
  5. 5.
    S. Yamashita, S. Melmed, Insulin like growth factor I regulation of growth hormone gene transcription in primary rat pituitary cells. J. Clin. Invest. 79, 449–452 (1987)CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    S. Melmed, S. Yamashita, H. Yamasaki, J. Fagin, H. Namba, H. Yamamoto, M. Weber, S. Morita, J. Webster, D. Prager, IGF-I receptor signaling: lessons from the somatotroph. Recent Prog. Horm. Res. 51, 189–215 (1996)PubMedGoogle Scholar
  7. 7.
    R.M. Luque, M.D. Gahete, R.J. Valentine, R.D. Kineman, Examination of the direct effects of metabolic factors on somatotrope function in a non-human primate model, Papio Anubis. J. Mol. Endocrinol. 37(1), 25–38 (2006)CrossRefPubMedGoogle Scholar
  8. 8.
    A. Colao, R.S. Auriemma, G. Lombardi, R. Pivonello, Resistance to somatostatin analogs in acromegaly. Endocr. Rev. 32, 247–271 (2011).  https://doi.org/10.1210/er.2010-0002 CrossRefPubMedGoogle Scholar
  9. 9.
    J.W. Unger, M. Betz, Insulin receptors and signal transduction proteins in the hypothalamo-hypophyseal system: a review on morphological findings and functional implications. Histol. Histopathol. 13, 1215–1224 (1998)PubMedGoogle Scholar
  10. 10.
    A.I. Castillo, A. Aranda, Differential regulation of pituitary-specific gene expression by insulin-like growth factor 1 in rat pituitary GH4C1 and GH3 cells. Endocrinology 138, 5442–5451 (1997)CrossRefPubMedGoogle Scholar
  11. 11.
    M. Fernández, F. Sánchez-Franco, N. Palacios, I. Sánchez, G. Villuendas, L. Cacicedo, Involvement of vasoactive intestinal peptide on insulin-like growth factor I-induced proliferation of rat pituitary lactotropes in primary culture: evidence for an autocrine and/or paracrine regulatory system. Neuroendocrinology 77, 341–352 (2003)CrossRefPubMedGoogle Scholar
  12. 12.
    M. Fernández, F. Sánchez-Franco, N. Palacios, I. Sánchez, C. Fernández, L. Cacicedo, IGF-I inhibits apoptosis through the activation of the phosphatidylinositol 3-kinase/Akt pathway in pituitary cells. J. Mol. Endocrinol. 33, 155–163 (2004)CrossRefPubMedGoogle Scholar
  13. 13.
    H. Rubinfeld, A. Kammer, O. Cohen, A. Gorshtein, Z.R. Cohen, M. Hadani, H. Werner, I. Shimon, IGF1 induces cell proliferation in human pituitary tumors—functional blockade of IGF1 receptor as a novel therapeutic approach in non-functioning tumors. Mol. Cell. Endocrinol. 390, 93–101 (2014).  https://doi.org/10.1016/j.mce.2014.04.007 CrossRefPubMedGoogle Scholar
  14. 14.
    D. Romano, M. Pertuit, R. Rasolonjanahary, J.V. Barnier, K. Magalon, A. Enjalbert, C. Gerard, Regulation of the RAP1/RAF-1/extracellularly regulated kinase-1/2 cascade and prolactin release by the phosphoinositide 3-kinase/AKT pathway in pituitary cells. Endocrinology 147, 6036–6045 (2006)CrossRefPubMedGoogle Scholar
  15. 15.
    A.I. Castillo, R.M. Tolon, A. Aranda, Insulin-like growth factor-1 stimulates rat prolactin gene expression by a Ras, ETS and phosphatidylinositol 3-kinase dependent mechanism. Oncogene 16, 1981–1991 (1998)CrossRefPubMedGoogle Scholar
  16. 16.
    E. Monsalves, K. Juraschka, T. Tateno, S. Agnihotri, S.L. Asa, S. Ezzat, G. Zadeh, The PI3K/AKT/mTOR pathway in the pathophysiology and treatment of pituitary adenomas. Endocr. Relat. Cancer 21, R331–R344 (2014).  https://doi.org/10.1530/ERC-14-0188 CrossRefPubMedGoogle Scholar
  17. 17.
    M. Musat, M. Korbonits, B. Kola, N. Borboli, M.R. Hanson, A.M. Nanzer, J. Grigson, S. Jordan, D.G. Morris, M. Gueorguiev, M. Coculescu, S. Basuand, A.B. Grossman, Enhanced protein kinase B/Akt signaling in pituitary tumors. Endocr. Relat. Cancer 12, 423–433 (2005).  https://doi.org/10.1677/erc.1.00949 CrossRefPubMedGoogle Scholar
  18. 18.
    D. Dworakowska, E. Wlodek, C.A. Leontiou, S. Igreja, M. Cakir, M. Teng, M.I. Prodromou, N. Góth, S. Grozinsky-Glasberg, M. Gueorguiev, B. Kola, M. Korbonits, A.B. Grossman, Activation of RAF/MEK/ERK and PI3K/AKT/mTOR pathways in pituitary adenomas and their effects on downstream effectors. Endocr. Relat. Cancer. 16, 1329–1338 (2009)CrossRefPubMedGoogle Scholar
  19. 19.
    A. Gorshtein, H. Rubinfeld, E. Kendler, M. Theodoropoulou, V. Cerovac, G.K. Stalla, Z.R. Cohen, M. Hadani, I. Shimon, Mammalian target of rapamycin inhibitors rapamycin and RAD001 (everolimus) induce anti-proliferative effects in GH-secreting pituitary tumor cells in vitro. Endocr. Relat. Cancer 16, 1017–1027 (2009).  https://doi.org/10.1677/ERC-08-0269 CrossRefPubMedGoogle Scholar
  20. 20.
    E.A. Sajjad, G. Zieliński, M. Maksymowicz, Ł. Hutnik, T. Bednarczuk, P. Włodarski, mTOR is frequently active in GH-secreting pituitary adenomas without influencing their morphopathological features. Endocr. Pathol. 24, 11–19 (2013).  https://doi.org/10.1007/s12022-012-9230-y CrossRefPubMedGoogle Scholar
  21. 21.
    M.C. Zatelli, M. Minoia, C. Filieri, F. Tagliati, M. Buratto, M.R. Ambrosio, M. Lapparelli, M. Scanarini, E.C. degli Uberti, Effect of everolimus on cell viability in nonfunctioning pituitary adenomas. J. Clin. Endocrinol. Metab. 95, 968–976 (2010).  https://doi.org/10.1210/jc.2009-1641 CrossRefPubMedGoogle Scholar
  22. 22.
    E. Gentilin, C. Di Pasquale, M. Rossi, F. Tagliati, T. Gagliano, R. Rossi, M. Pelizzo, I. Merante Boschin, E.C. degli Uberti, M.C. Zatelli, Igf-I influences everolimus activity in medullary thyroid carcinoma. Front. Endocrinol 6, 63 (2015).  https://doi.org/10.3389/fendo.2015.00063 CrossRefGoogle Scholar
  23. 23.
    T. Gagliano, M. Bellio, E. Gentilin, D. Molè, F. Tagliati, M. Schiavon, N.G. Cavallesco, L.G. Andriolo, M.R. Ambrosio, F. Rea, E. degli Uberti, M.C. Zatelli, mTOR, p70S6K, AKT, and ERK1/2 levels predict sensitivity to mTOR and PI3K/mTOR inhibitors in human bronchial carcinoids. Endocr. Relat. Cancer 20, 463–475 (2013).  https://doi.org/10.1530/ERC-13-0042 CrossRefPubMedGoogle Scholar
  24. 24.
    F. Tagliati, T. Gagliano, E. Gentilin, M. Minoia, D. Molè, E.C. degli Uberti, M.C. Zatelli, Magmas overexpression inhibits staurosporine induced apoptosis in rat pituitary adenoma cell lines. PLoS One 8, e75194 (2013).  https://doi.org/10.1371/annotation/3af6faef-d942-4221-8d1a-47ce279e462b CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    E. Gentilin, D. Molè, T. Gagliano, M. Minoia, M.R. Ambrosio, E.C. degli Uberti, M.C. Zatelli, Inhibitory effects of mitotane on viability and secretory activity in mouse gonadotroph cell lines. Reprod. Toxicol. 45, 71–76 (2014).  https://doi.org/10.1016/j.reprotox.2014.01.008 CrossRefPubMedGoogle Scholar
  26. 26.
    E. Gentilin, F. Tagliati, M. Terzolo, M. Zoli, M. Lapparelli, M. Minoia, M.R. Ambrosio, E.C. degli Uberti, M.C. Zatelli, Mitotane reduces human and mouse ACTH-secreting pituitary cell viability and function. J. Endocrinol. 218, 275–285 (2013).  https://doi.org/10.1530/JOE-13-0210 CrossRefPubMedGoogle Scholar
  27. 27.
    M.C. Zatelli, D. Piccin, C. Vignali, F. Tagliati, M.R. Ambrosio, M. Bondanelli, V. Cimino, A. Bianchi, H.A. Schmid, M. Scanarini, A. Pontecorvi, L. De Marinis, G. Maira, E.C. degli Uberti, Pasireotide, a multiple somatostatin receptor subtypes ligand, reduces cell viability in non-functioning pituitary adenomas by inhibiting vascular endothelial growth factor secretion. Endocr. Relat. Cancer 14, 91–102 (2007)CrossRefPubMedGoogle Scholar
  28. 28.
    M.W. Pfaffl, A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 623, 29 e45 (2001)Google Scholar
  29. 29.
    E. Gentilin, C. Di Pasquale, T. Gagliano, F. Tagliati, K. Benfini, M.R. Ambrosio, M. Bondanelli, E.C. degli Uberti, M.C. Zatelli, Protein Kinase C Delta restrains growth in ACTH-secreting pituitary adenoma cells. Mol. Cell. Endocrinol. 419, 252–258 (2016).  https://doi.org/10.1016/j.mce.2015.10.025 CrossRefPubMedGoogle Scholar
  30. 30.
    T. Gagliano, E. Gentilin, K. Benfini, C. Di Pasquale, M. Tassinari, S. Falletta, C. Feo, F. Tagliati, E. degli Uberti, M.C. Zatelli, Mitotane enhances doxorubicin cytotoxic activity by inhibiting P-gp in human adrenocortical carcinoma cells. Endocrine 47, 943–951 (2014).  https://doi.org/10.1007/s12020-014-0374-z CrossRefPubMedGoogle Scholar
  31. 31.
    T. Gagliano, E. Gentilin, F. Tagliati, K. Benfini, C. Di Pasquale, C. Feo, S. Falletta, E. Riva, E. degli Uberti, M.C. Zatelli, Inhibition of epithelial growth factor receptor can play an important role in reducing cell growth and survival in adrenocortical tumors. Biochem. Pharmacol. 98, 639–648 (2015).  https://doi.org/10.1016/j.bcp.2015.10.012 CrossRefPubMedGoogle Scholar
  32. 32.
    C.J. Romero, E. Pine-Twaddell, D.I. Sima, R.S. Miller, L. He, F. Wondisford, S. Radovick, Insulin-like growth factor 1 mediates negative feedback to somatotroph GH expression via POU1F1/CREB binding protein interactions. Mol. Cell. Biol. 32, 4258–4269 (2012).  https://doi.org/10.1128/MCB.00171-12 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    M.C. Zatelli, M. Minoia, C. Martini, F. Tagliati, M.R. Ambrosio, M. Schiavon, M. Buratto, F. Calabrese, E. Gentilin, G. Cavallesco, L. Berdondini, F. Rea, E.C. degli Uberti, Everolimus as a new potential antiproliferative agent in aggressive human bronchial carcinoids. Endocr. Relat. Cancer 17, 719–729 (2010).  https://doi.org/10.1677/ERC-10-0097 CrossRefPubMedGoogle Scholar
  34. 34.
    I. Hers, E.E. Vincent, J.M. Tavaré, Akt signaling in health and disease. Cell. Signal. 23, 1515–1527 (2011).  https://doi.org/10.1016/j.cellsig.2011.05.004 CrossRefPubMedGoogle Scholar
  35. 35.
    A. Carracedo, L. Ma, J. Teruya-Feldstein, F. Rojo, L. Salmena, A. Alimonti, A. Egia, A.T. Sasaki, G. Thomas, S.C. Kozma, A. Papa, C. Nardella, L.C. Cantley, J. Baselga, P.P. Pandolfi, Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J. Clin. Invest. 118, 3065–3074 (2008).  https://doi.org/10.1172/JCI34739 PubMedPubMedCentralGoogle Scholar
  36. 36.
    S.L. Atkin, A.M. Landolt, R.V. Jeffreys, L. Hipkin, J. Radcliffe, C.R. Squire, M.C. White, Differential effects of insulin-like growth factor 1 on the hormonal product and proliferation of glycoprotein-secreting human pituitary adenomas. J. Clin. Endocrinol. Metab. 77, 1059–1066 (1993)PubMedGoogle Scholar
  37. 37.
    V. Cerovac, J. Monteserin-Garcia, H. Rubinfeld, M. Buchfelder, M. Losa, T. Florio, M. Paez-Pereda, G.K. Stalla, M. Theodoropoulou, The somatostatin analog octreotide confers sensitivity to rapamycin treatment on pituitary tumor cell. Cancer Res. 70, 666–674 (2010).  https://doi.org/10.1158/0008-5472.CAN-09-2951 CrossRefPubMedGoogle Scholar
  38. 38.
    B. Kola, M. Korbonits, S. Diaz-Cano, G. Kaltsas, D.G. Morris, S. Jordan, L. Metherell, M. Powell, S. Czirják, G. Arnaldi, S. Bustin, M. Boscaro, F. Mantero, A.B. Grossman, Reduced expression of the growth hormone and type 1 insulin-like growth factor receptors in human somatotroph tumors and an analysis of possible mutations of the growth hormone receptor. Clin. Endocrinol. 59, 328–338 (2003)CrossRefGoogle Scholar
  39. 39.
    Y. Greenman, D. Prager, S. Melmed, The IGF-I receptor sub-membrane domain is intact in GH-secreting pituitary tumors. Clin. Endocrinol. 42, 169–172 (1995)CrossRefGoogle Scholar
  40. 40.
    S. Morita, S. Yamashita, S. Melmed, Insulin-like growth factor I action on rat anterior pituitary cells: effects of intracellular messengers on growth hormone secretion and messenger ribonucleic acid levels. Endocrinology 121, 2000–2006 (1987)CrossRefPubMedGoogle Scholar
  41. 41.
    R. Yao, G.M. Cooper, Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science 267, 2003–2006 (1995)CrossRefPubMedGoogle Scholar
  42. 42.
    K.E. O’Reilly, F. Rojo, Q.B. She, D. Solit, G.B. Mills, D. Smith, H. Lane, F. Hofmann, D.J. Hicklin, D.L. Ludwig, J. Baselga, N. Rosen, mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 66, 1500–1508 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    A.I. Arroba, L.M. Frago, J. Argente, J.A. Chowen, Estrogen requires the insulin-like growth factor-I receptor for stimulation of prolactin synthesis via mitogen-activated protein kinase. J. Neuroendocrinol. 17, 97–104 (2005)CrossRefPubMedGoogle Scholar
  44. 44.
    F.Y. Gong, J.Y. Deng, Y.F. Shi, Mek and p38 MAPK-dependant pathways are involoved in the positive effect of interleukin-6 on human growth hormone gene expression in rat MtT/S somatotroph cells. Chin. Med. Sci. J. 23, 73–80 (2008)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Medical SciencesSection of Endocrinology & Internal Medicine, University of FerraraFerraraItaly
  2. 2.Laboratorio in rete del Tecnopolo “Tecnologie delle terapie avanzate” (LTTA) of the University of FerraraFerraraItaly

Personalised recommendations