Skip to main content

Advertisement

Log in

Altered expression of circadian clock genes in polyglandular autoimmune syndrome type III

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Circadian timing system is a highly conserved, ubiquitous molecular “clock” which creates internal circadian rhythmicity. Dysregulation of clock genes expression is associated with various diseases including immune dysregulation. In this study we investigated the circadian pattern of Clock-related genes in patients with polyglandular autoimmune syndrome type III (PAS type III).

Methods

Nineteen patients diagnosed with PAS type III and 12 healthy controls were enrolled. mRNA and protein expression of Clock-related genes (CLOCK, BMAL1, ROR and Per-1,-2,-3), as well as the GR-a and the GILZ genes were determined by real-time quantitative PCR and western blot analysis from blood samples drawn at 8 pm and 8am. Serum cortisol and TSH, as well as plasma ACTH, were measured by chemiluminescence.

Results

There were no statistical significant differences in the metabolic profile, cortisol, ACTH and TSH levels between patients and controls. Patients with PAS type III expressed higher transcript levels of CLOCK, BMAL1 and Per-1 in the evening than in the morning (p = 0.03, p = 0.029, p = 0.013, respectively), while the ratios (Rpm/am) of GR-a, CLOCK, BMAL1, and Per-3 mRNA levels were statistically different between patients and controls. Cortisol circadian variation (Fpm/am) was positively correlated with GILZ mRNA circadian pattern (Rpm/am) in the patient group and with the GR-a mRNA (Rpm/am) in the control group.

Conclucions

Our findings suggest that there is an aberrant circadian rhythm of Clock-related genes in patients with PAS type III. The disruption of the expression of 4 circadian Clock-related genes could indicate a possible association with the pathogenesis of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J.S. Takahashi, H.K. Hong, C.H. Ko, E.L. McDearmon, The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat. Rev. Genet. 10, 764–775 (2008)

    Article  Google Scholar 

  2. M. Hastings, J.S. O’Neill, E.S. Maywood, Circadian clocks: regulators of endocrine and metabolic rhythms. J. Endocrinol. 195, 187–198 (2007)

    Article  CAS  PubMed  Google Scholar 

  3. W. Huang, K.M. Ramsey, B. Marcheva, J. Bass, Circadian rhythms, sleep, and metabolism. J. Clin. Invest. 121, 2133–2141 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. N.C. Nicolaides, E. Charmandari, G.P. Chrousos, T. Kino, Circadian endocrine rhythms: the hypothalamic-pituitary-adrenal axis and its actions. Ann. N. Y. Acad. Sci. 1318, 71–80 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. D.A. Stavreva, M. Wiench, S. John, B.L. Conway-Campbell, M.A. McKenna, J.R. Pooley, T.A. Johnson, T.C. Voss, S.L. Lightman, G.L. Hager, Ultradian hormone stimulation induces glucocorticoid receptor-mediated pulses of gene transcription. Nat. Cell. Biol. 11, 1093–1102 (2009)

    Article  CAS  PubMed  Google Scholar 

  6. J. Xiao, Y. Zhou, H. Lai, S. Lei, L.H. Chi, X. Mo, Transcription factor NF-Y is a functional regulator of the transcription of core clock gene Bmal1. J. Biol. Chem. 288, 31930–31936 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. N. Nader, G.P. Chrousos, T. Kino, Interactions of the circadian CLOCK system and the HPA axis. Trends Endocrinol. Metab. 21, 277–286 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. N.C. Nicolaides, E. Charmandari, G.P. Chrousos, T. Kino, Recent advances in the molecular mechanisms determining tissue sensitivity to glucocorticoids: novel mutations, circadian rhythm and ligand-induced repression of the human glucocorticoid receptor. BMC Endocr. Disord. 14, 71 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  9. C. Crumbley, T.P. Burris, Direct regulation of CLOCK expression by REV-ERB. PLOS. ONE. 26, 17290 (2011)

    Article  Google Scholar 

  10. J. Lee, S. Lee, S. Chung, N. Park, G.H. Son, H. An, J. Jang, D.J. Chang, Y.G. Suh, K. Kim, Identification of a novel circadian clock modulator controlling BMAL1 expression through a ROR/REV-ERB-response element-dependent mechanism. Biochem. Biophys. Res. Commun. 469, 580–586 (2016)

    Article  CAS  PubMed  Google Scholar 

  11. M.Y. Yang, W.C. Yang, P.M. Lin, J.F. Hsu, H.H. Hsiao, Y.C. Liu, H.J. Tsai, C.S. Chang, S.F. Lin, Altered expression of circadian clock genes in human chronic myeloid leukemia. J. Biol. Rhythm. 26, 136–148 (2011)

    Article  Google Scholar 

  12. E. Charmandari, G.P. Chrousos, G.I. Lambrou, A. Pavlaki, H. Koide, S.S. Ng, T. Kino, Peripheral CLOCK regulates target-tissue glucocorticoid receptor transcriptional activity in a circadian fashion in man. PLOS. ONE. 6, e25612 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. M.G. Pavlatou, K.C. Vickers, S. Varma, R. Malek, M. Sampson, A.T. Remaley, P.W. Gold, M.C. Skarulis, T. Kino, Circulating cortisol-associated signature of glucocorticoid-related gene expression in subcutaneous fat of obese subjects. Obesity 21, 960–967 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. N. Nader, G.P. Chrousos, T. Kino, Circadian rhythm transcription factor CLOCK regulates the transcriptional activity of the glucocorticoid receptor by acetylating its hinge region lysine cluster: potential physiological implications. FASEB J. 23, 1572–1583 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. S. Karaki, G. Garcia, C. Tcherakian, F. Capel, T. Tran, M. Pallardy, M. Humbert, D. Emilie, V. Godot, Enhanced glucocorticoid-induced leucine zipper in dendritic cells induces allergen-specific regulatory CD4( + ) T-cells in respiratory allergies. Allergy 69, 624–631 (2014)

    Article  CAS  PubMed  Google Scholar 

  16. Q. Cheng, E. Morand, Y.H. Yang, Development of novel treatment strategies for inflammatory diseases-similarities and divergence between glucocorticoids and GILZ. Front. Pharmacol. 5, 169 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  17. B. Ergun-Longmire, N.K. Maclaren, Autoimmune Polyglandular Syndromes. L.J. De Groot, G. Chrousos, K. Dungan, K.R. Feingold, A. Grossman, J.M. Hershman, C. Koch, M. Korbonits, R. McLachlan, M. New, J. Purnell, R. Rebar, F. Singer, A. Vinik (eds.) Endotext [Internet]. MDText.com, Inc.: South Dartmouth (MA) (2014)

  18. N.K. Maclaren, W.J. Riley, Thyroid, gastric, and adrenal autoimmunities associated with insulin-dependent diabetes mellitus. Diabetes Care 8(Suppl), 34–38 (1985)

    Article  PubMed  Google Scholar 

  19. K. Aung, Type III polyglandular autoimmune syndrome. Medscape (2014). http://emedicine.medscape.com/article/124398-overview

  20. S.R. Bornstein, B. Allolio, W. Arlt, A. Barthel, Don-A. Wauchope, G.D. Hammer, E.S. Husebye, D.P. Merke, M.H. Murad, C.A. Stratakis, D.J. Torpy, Diagnosis and treatment of primary adrenal insufficiency: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 101, 364–389 (2016)

    Article  CAS  PubMed  Google Scholar 

  21. E.S. Husebye, B. Allolio, W. Arlt, K. Badenhoop, S. Bensing, C. Betterle, A. Falorni, E.H. Gan, A.L. Hulting, A. Kasperlik-Zaluska, O. Kämpe, K. Løvås, G. Meyer, S.H. Pearce;, Consensus statement on the diagnosis, treatment and follow-up of patients withprimary adrenal insufficiency. J. Intern. Med. 275, 104–115 (2014)

    Article  CAS  PubMed  Google Scholar 

  22. K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402–408 (2001)

    Article  CAS  PubMed  Google Scholar 

  23. M.M. Bradford, Anal. Biochem. 72, 248–254 (1976)

    Article  CAS  PubMed  Google Scholar 

  24. E.N. Kassi, G.P. Chrousos, The central CLOCK system and the stress axis in health and disease. Hormones 12, 172–191 (2013)

    Article  PubMed  Google Scholar 

  25. J. Eddleston, J. Herschbach, A.L. Wagelie-Steffen, S.C. Christiansen, B.L. Zuraw, The anti-inflammatory effect of glucocorticoids is mediated by glucocorticoid-induced leucine zipper in epithelial cells. J. Allergy Clin. Immunol. 119, 115–122 (2007)

    Article  CAS  PubMed  Google Scholar 

  26. H. Kusanagi, K. Mishim, K. Satoh, M. Echizenya, T. Katoh, T. Shimizu, Similar profiles in human period1 gene expression in peripheral mononuclear and polymorphonuclear cells. Neurosci. Lett. 365, 124–127 (2004)

    Article  CAS  PubMed  Google Scholar 

  27. D.B. Boivin, F.O. James, A. Wu, P.F. Cho-Park, H. Xiong, Z.S. Sun, Circadian clock genesoscillate in human peripheral blood mononuclear cells. Blood 102, 4143–4145 (2003)

    Article  CAS  PubMed  Google Scholar 

  28. S.A. Brown, D. Kunz, A. Dumas, P.O. Westermark, K. Vanselow, A. Tilmann-Wahnschaffe, H. Herzel, A. Kramer, Molecular insights into human daily behavior. Proc. Natl. Acad. Sci. U.S.A. 105, 1602–1607 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. M.S. Hung, P. Avner, U.C. Rogner, Identification of the transcription factor ARNTL2 as a candidate gene for the type 1 diabetes locus Idd6. Hum. Mol. Genet. 15, 2732–2742 (2006)

    Article  CAS  PubMed  Google Scholar 

  30. B. Marcheva, K.M. Ramsey, E.D. Buhr, Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466, 627–631 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. B. Lebailly, C. Boitard, U.C. Rogner, Circadian rhythm-related genes: implication in autoimmunity and type 1 diabetes. Diabetes Obes. Metab. 1, 134–138 (2015)

    Article  Google Scholar 

  32. C.M. Spies, P. Hoff, J. Mazuch, T. Gaber, B. Maier, C. Strehl, M. Hahne, M. Jakstadt, D. Huscher, G.R. Burmester, J. Detert, A. Kramer, F. Buttgereit, Circadian rhythms of cellular immunity in rheumatoid arthritis: a hypothesis-generating study. Clin. Exp. Rheumatol. 33, 34–43 (2015)

    PubMed  Google Scholar 

  33. O. Palmieri, G. Mazzoccoli, F. Bossa, R. Maglietta, O. Palumbo, N. Ancona, G. Corritore, T. Latiano, G. Martino, R. Rubino, G. Biscaglia, D. Scimeca, M. Carella, V. Annese, A. Andriulli, A. Latiano, Systematic analysis of circadian genes using genome-wide cDNA microarrays in the inflammatory bowel disease transcriptome. Chronobiol. Int. 32(7), 903–916 (2015)

    Article  PubMed  Google Scholar 

  34. C. Betterle, N.A. Greggio, M. Volpato, Autoimmune Polyglandular Syndrome Type 1. J. Clin. Endocrinol. Metab. 83, 1049–1055 (1998)

    Article  CAS  PubMed  Google Scholar 

  35. T. Bollinger, A. Leutz, A. Leliavski, L. Skrum, J. Kovac, L. Bonacina, C. Benedict, T. Lange, J. Westermann, H. Oster, W. Solbach, Circadian clocks in mouse and human CD4 + T cells. PLOS. ONE. 6, e29801 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. S. Dimitrov, T. Lange, K. Nohroudi, J. Born, Number and function of circulating human antigen presenting cells regulated by sleep. Sleep 30, 401–411 (2007)

    Article  PubMed  Google Scholar 

  37. V. Brusic, K. Bucci, C. Schönbach, N. Petrovsky, J. Zeleznikow, J.W. Kazura, Efficient discovery of immune response targets by cyclical refinement of QSAR models of peptide binding. J. Mol. Graph. Model. 19, 405–411 (2001)

    Article  CAS  PubMed  Google Scholar 

  38. M.L. Spengler, K.K. Kuropatwinski, M. Comas, A.V. Gasparian, N. Fedtsova, A.S. Gleiberman II, N.M. Gitlin, K.A. Artemicheva, A.V. Deluca, M.P. Gudkov, Antoch; Core circadian protein CLOCK is a positive regulator of NF-κB-mediated transcription. Proc. Natl. Acad. Sci. U.S.A. 109, 2457–2465 (2012)

    Article  Google Scholar 

  39. D.V. Delfino, M. Agostini, S. Spinicelli, C. Vacca, C. Riccardi, Inhibited cell death, NF-kappaB activity and increased IL-10 in TCR-triggered thymocytes of transgenic mice overexpressing the glucocorticoid-induced protein GILZ. Int. Immunopharmacol. 6, 1126–1134 (2006)

    Article  CAS  PubMed  Google Scholar 

  40. A. Arjona, D.K. Sarkar, Evidence supporting a circadian control of natural killer cell function. Brain Behav. Immun. 20, 469–476 (2006)

    Article  CAS  PubMed  Google Scholar 

  41. D.R. Littman, A.Y. Rudensky, Th17 and regulatory T cells in mediating and restraining inflammation. Cell 140, 845–858 (2010)

    Article  CAS  PubMed  Google Scholar 

  42. E.V. Dang, J. Barbi, H.Y. Yang, D. Jinasena, H. Yu, Y. Zheng, Z. Bordman, J. Fu, Y. Kim, H.R. Yen, W. Luo, K. Zeller, L. Shimoda, S.L. Topalian, G.L. Semenza, C.V. Dang, D.M. Pardoll, F. Pan, Control of T(H)17/;T(reg) balance by hypoxia-inducible factor 1. Cell 146, 772–784 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gregory Kaltsas or Eva Kassi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Anna Angelousi, Narjes Nasiri-Ansari, Gregory Kaltsas and Eva Kassi authors are contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angelousi, A., Nasiri-Ansari, N., Spilioti, E. et al. Altered expression of circadian clock genes in polyglandular autoimmune syndrome type III. Endocrine 59, 109–119 (2018). https://doi.org/10.1007/s12020-017-1407-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-017-1407-1

Keywords

Navigation