Skip to main content

Advertisement

Log in

Bringing Attention to Lesser-known Bone Remodeling Pathways

  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Osteoporosis, a disease of low bone mass, places individuals at enhanced risk for fracture, disability, and death. In the USA, hospitalizations for osteoporotic fractures exceed those for heart attack, stroke, and breast cancer and, by 2025, the number of fractures due to osteoporosis is expected to rise to nearly three million in the USA alone. Pharmacological treatments for osteoporosis are aimed at stabilizing or increasing bone mass. However, there are significant drawbacks to current pharmacological options, particularly for long-term management of this chronic condition. Moreover, the drug development pipeline is relatively bereft of new strategies. Consequently, there is an urgent and unmet need for developing new strategies and targets for treating osteoporosis. Casual observation led us to hypothesize that much of the bone remodeling research literature focused on relatively few molecular pathways. This led us to perform bibliometric analyses to determine the relative popularity of bone remodeling pathways in publications and US National Institutes of Health funding of the last 10 years. In this review article, we discuss these findings and highlight several less-examined signaling pathways that may hold promise for future therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Raisz LG. Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest. 2005;115(12):3318–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Leboime A, Confavreux CB, Mehsen N, Paccou J, David C, Roux C. Osteoporosis and mortality. Joint Bone Spine. 2010;77(Suppl 2):S107–12.

    Article  PubMed  Google Scholar 

  3. Wade SW, Strader C, Fitzpatrick LA, Anthony MS, O’Malley CD. Estimating prevalence of osteoporosis: examples from industrialized countries. Arch Osteoporos. 2014;9(1):182.

    Article  CAS  PubMed  Google Scholar 

  4. Looker AC. Percentage of adults aged 65 and over with osteoporosis or low bone mass at the femur neck or lumbar spine: United States, 2005–2010. 2015 [cited 2018], Available from: https://www.cdc.gov/nchs/data/hestat/osteoporsis/osteoporosis2005_2010.htm.

  5. Singer A, Exuzides A, Spangler L, O’Malley C, Colby C, Johnston K, et al. Burden of illness for osteoporotic fractures compared with other serious diseases among postmenopausal women in the United States. Mayo Clin Proc. 2015;90(1):53–62.

    Article  PubMed  Google Scholar 

  6. Camacho PM, Petak SM, Binkley N, Clarke BL, Harris ST, Hurley DL, et al. American Association of Clinical Endocrinologists and American College of Endocrinology Clinical Practice Guidelines for the diagnosis and treatment of postmenopausal osteoporosis - 2016. Endocr Pract. 2016;22(Suppl 4):1–42.

    Article  PubMed  Google Scholar 

  7. Watts NB, et al. American Association of Clinical Endocrinologists Medical Guidelines for Clinical Practice for the diagnosis and treatment of postmenopausal osteoporosis. Endocr Pract. 2010;16(Suppl 3):1–37.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Suresh E, Pazianas M, Abrahamsen B. Safety issues with bisphosphonate therapy for osteoporosis. Rheumatology (Oxford). 2014;53(1):19–31.

    Article  CAS  Google Scholar 

  9. Zaheer S, LeBoff M, Lewiecki EM. Denosumab for the treatment of osteoporosis. Expert Opin Drug Metab Toxicol. 2015;11(3):461–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Qaseem A, Forciea MA, McLean RM, Denberg TD, for the Clinical Guidelines Committee of the American College of Physicians. Treatment of low bone density or osteoporosis to prevent fractures in men and women: a clinical practice guideline update from the American College of Physicians. Ann Intern Med. 2017;166(11):818–39.

    Article  PubMed  Google Scholar 

  11. Gullberg B, Johnell O, Kanis JA. World-wide projections for hip fracture. Osteoporos Int. 1997;7(5):407–13.

    Article  CAS  PubMed  Google Scholar 

  12. Bill Berkrot BH. Heart safety clouds hopes for Amgen, UCB bone drug approval. 2017.

  13. Mullard A. Merck &Co. drops osteoporosis drug odanacatib. Nat Rev Drug Discov. 2016;15(10):669.

    PubMed  PubMed Central  Google Scholar 

  14. Martineau C, Najyb O, Signor C, Rassart É, Moreau R. Apolipoprotein D deficiency is associated to high bone turnover, low bone mass and impaired osteoblastic function in aged female mice. Metabolism. 2016;65(9):1247–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ishii M, Koike C, Igarashi A, Yamanaka K, Pan H, Higashi Y, et al. Molecular markers distinguish bone marrow mesenchymal stem cells from fibroblasts. Biochem Biophys Res Commun. 2005;332(1):297–303.

    Article  CAS  PubMed  Google Scholar 

  16. Schilling AF, Schinke T, Münch C, Gebauer M, Niemeier A, Priemel M, et al. Increased bone formation in mice lacking apolipoprotein E. J Bone Miner Res. 2005;20(2):274–82.

    Article  CAS  PubMed  Google Scholar 

  17. Beak JY, Kang HS, Kim YS, Jetten AM. Kruppel-like zinc finger protein Glis3 promotes osteoblast differentiation by regulating FGF18 expression. J Bone Miner Res. 2007;22(8):1234–44.

    Article  CAS  PubMed  Google Scholar 

  18. Miki Y, Hata S, Ono K, Suzuki T, Ito K, Kumamoto H, et al. Roles of aryl hydrocarbon receptor in aromatase-dependent cell proliferation in human osteoblasts. Int J Mol Sci. 2017;18(10):2159. https://doi.org/10.3390/ijms18102159.

    Article  PubMed Central  Google Scholar 

  19. Yu H, Du Y, Zhang X, Sun Y, Li S, Dou Y, et al. The aryl hydrocarbon receptor suppresses osteoblast proliferation and differentiation through the activation of the ERK signaling pathway. Toxicol Appl Pharmacol. 2014;280(3):502–510.

    Article  CAS  PubMed  Google Scholar 

  20. Yu TY, Pang WJ, Yang GS. Aryl hydrocarbon receptors in osteoclast lineage cells are a negative regulator of bone mass. PLoS One. 2015;10(1):e0117112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hsu EL, Sonn K, Kannan A, Bellary S, Yun C, Hashmi S, et al. Dioxin exposure impairs BMP-2-mediated spinal fusion in a rat arthrodesis model. J Bone Joint Surg Am. 2015;97(12):1003–10.

    Article  PubMed  Google Scholar 

  22. Yun C, Weiner JA, Chun DS, Yun J, Cook RW, Schallmo MS, et al. Mechanistic insight into the effects of Aryl Hydrocarbon Receptor activation on osteogenic differentiation. Bone Rep. 2017;6:51–9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tong Y, Niu M, du Y, Mei W, Cao W, Dou Y, et al. Aryl hydrocarbon receptor suppresses the osteogenesis of mesenchymal stem cells in collagen-induced arthritic mice through the inhibition of beta-catenin. Exp Cell Res. 2017;350(2):349–57.

    Article  CAS  PubMed  Google Scholar 

  24. Kung MH, Yukata K, O’Keefe RJ, Zuscik MJ. Aryl hydrocarbon receptor-mediated impairment of chondrogenesis and fracture healing by cigarette smoke and benzo(a)pyrene. J Cell Physiol. 2012;227(3):1062–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhou Y, Jiang R, An L, Wang H, Cheng S, Qiong S, et al. Benzo[a]pyrene impedes self-renewal and differentiation of mesenchymal stem cells and influences fracture healing. Sci Total Environ. 2017;587-588:305–15.

    Article  CAS  PubMed  Google Scholar 

  26. Izawa T, Arakaki R, Mori H, Tsunematsu T, Kudo Y, Tanaka E, et al. The nuclear receptor AhR controls bone homeostasis by regulating osteoclast differentiation via the RANK/c-Fos signaling axis. J Immunol. 2016;197(12):4639–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yu H, du Y, Zhang X, Sun Y, Li S, Dou Y, et al. The aryl hydrocarbon receptor suppresses osteoblast proliferation and differentiation through the activation of the ERK signaling pathway. Toxicol Appl Pharmacol. 2014;280(3):502–10.

    Article  CAS  PubMed  Google Scholar 

  28. Lapierre DM, Tanabe N, Pereverzev A, Spencer M, Shugg RPP, Dixon SJ, et al. Lysophosphatidic acid signals through multiple receptors in osteoclasts to elevate cytosolic calcium concentration, evoke retraction, and promote cell survival. J Biol Chem. 2010;285(33):25792–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Miyabe Y, Miyabe C, Iwai Y, Takayasu A, Fukuda S, Yokoyama W, et al. Necessity of lysophosphatidic acid receptor 1 for development of arthritis. Arthritis Rheum. 2013;65(8):2037–47.

    Article  CAS  PubMed  Google Scholar 

  30. Hwang YS, Ma GT, Park KK, Chung WY. Lysophosphatidic acid stimulates osteoclast fusion through OC-STAMP and P2X7 receptor signaling. J Bone Miner Metab. 2014;32(2):110–22.

    Article  CAS  PubMed  Google Scholar 

  31. Chen Z, Luo Q, Lin C, Kuang D, Song G. Simulated microgravity inhibits osteogenic differentiation of mesenchymal stem cells via depolymerizing F-actin to impede TAZ nuclear translocation. Sci Rep. 2016;6(1):30322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Masiello LM, Fotos JS, Galileo DS, Karin NJ. Lysophosphatidic acid induces chemotaxis in MC3T3-E1 osteoblastic cells. Bone. 2006;39(1):72–82.

    Article  CAS  PubMed  Google Scholar 

  33. Chen Z, Luo Q, Lin C, Song G. Simulated microgravity inhibits osteogenic differentiation of mesenchymal stem cells through down regulating the transcriptional co-activator TAZ. Biochem Biophys Res Commun. 2015;468(1–2):21–6.

    Article  CAS  PubMed  Google Scholar 

  34. Liu YB, Kharode Y, Bodine PV, Yaworsky PJ, Robinson JA, Billiard J. LPA induces osteoblast differentiation through interplay of two receptors: LPA1 and LPA4. J Cell Biochem. 2010;109(4):794–800.

    CAS  PubMed  Google Scholar 

  35. Gennero I, Laurencin-Dalicieux S, Conte-Auriol F, Briand-Mésange F, Laurencin D, Rue J, et al. Absence of the lysophosphatidic acid receptor LPA1 results in abnormal bone development and decreased bone mass. Bone. 2011;49(3):395–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shanmugarajan S, Youssef RF, Pati P, Ries WL, Rao DS, Reddy SV. Osteoclast inhibitory peptide-1 (OIP-1) inhibits measles virus nucleocapsid protein stimulated osteoclast formation/activity. J Cell Biochem. 2008;104(4):1500–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shanmugarajan S, Beeson CC, Reddy SV. Osteoclast inhibitory peptide-1 binding to the Fc gammaRIIB inhibits osteoclast differentiation. Endocrinology. 2010;151(9):4389–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shanmugarajan S, Irie K, Musselwhite C, Key LL Jr, Ries WL, Reddy SV. Transgenic mice with OIP-1/hSca overexpression targeted to the osteoclast lineage develop an osteopetrosis bone phenotype. J Pathol. 2007;213(4):420–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tamma R, Colaianni G, Zhu LL, DiBenedetto A, Greco G, Montemurro G, et al. Oxytocin is an anabolic bone hormone. Proc Natl Acad Sci U S A. 2009;106(17):7149–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Elabd C, Basillais A, Beaupied H, Breuil V, Wagner N, Scheideler M, et al. Oxytocin controls differentiation of human mesenchymal stem cells and reverses osteoporosis. Stem Cells. 2008;26(9):2399–407.

    Article  CAS  PubMed  Google Scholar 

  41. Colaianni G, di Benedetto A, Zhu LL, Tamma R, Li J, Greco G, et al. Regulated production of the pituitary hormone oxytocin from murine and human osteoblasts. Biochem Biophys Res Commun. 2011;411(3):512–5.

    Article  CAS  PubMed  Google Scholar 

  42. Colaianni G, Sun L, di Benedetto A, Tamma R, Zhu LL, Cao J, et al. Bone marrow oxytocin mediates the anabolic action of estrogen on the skeleton. J Biol Chem. 2012;287(34):29159–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu X, Shimono K, Zhu LL, Li J, Peng Y, Imam A, et al. Oxytocin deficiency impairs maternal skeletal remodeling. Biochem Biophys Res Commun. 2009;388(1):161–6.

    Article  CAS  PubMed  Google Scholar 

  44. Laffitte A, Neiers F, Briand L. Functional roles of the sweet taste receptor in oral and extraoral tissues. Curr Opin Clin Nutr Metab Care. 2014;17(4):379–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Eaton MS, Weinstein N, Newby JB, Plattes MM, Foster HE, Arthur JW, et al. Loss of the nutrient sensor TAS1R3 leads to reduced bone resorption. J Physiol Biochem. 2018;74(1):3–8.

    Article  CAS  PubMed  Google Scholar 

  46. Simon BR, Learman BS, Parlee SD, Scheller EL, Mori H, Cawthorn WP, et al. Sweet taste receptor deficient mice have decreased adiposity and increased bone mass. PLoS One. 2014;9(1):e86454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee AA, Owyang C. Sugars, sweet taste receptors, and brain responses. Nutrients. 2017:9(7):653. https://doi.org/10.3390/nu9070653.

    Article  PubMed Central  Google Scholar 

  48. Indo Y, Takeshita S, Ishii KA, Hoshii T, Aburatani H, Hirao A, et al. Metabolic regulation of osteoclast differentiation and function. J Bone Miner Res. 2013;28(11):2392–9.

    Article  CAS  PubMed  Google Scholar 

  49. Brighton PJ, Szekeres PG, Willars GB. Neuromedin U and its receptors: structure, function, and physiological roles. Pharmacol Rev. 2004;56(2):231–48.

    Article  CAS  PubMed  Google Scholar 

  50. Sato S, Hanada R, Kimura A, Abe T, Matsumoto T, Iwasaki M, et al. Central control of bone remodeling by neuromedin U. Nat Med. 2007;13(10):1234–40.

    Article  CAS  PubMed  Google Scholar 

  51. Rucinski M, Ziolkowska A, Tyczewska M, Szyszka M, Malendowicz LK. Neuromedin U directly stimulates growth of cultured rat calvarial osteoblast-like cells acting via the NMU receptor 2 isoform. Int J Mol Med. 2008;22(3):363–8.

    CAS  PubMed  Google Scholar 

  52. Ruiz-Heiland G, Zhao Y, Derer A, Braun T, Engelke K, Neumann E, et al. Deletion of the receptor tyrosine kinase Tyro3 inhibits synovial hyperplasia and bone damage in arthritis. Ann Rheum Dis. 2014;73(4):771–9.

    Article  CAS  PubMed  Google Scholar 

  53. Nakamura YS, Hakeda Y, Takakura N, Kameda T, Hamaguchi I, Miyamoto T, et al. Tyro 3 receptor tyrosine kinase and its ligand, Gas6, stimulate the function of osteoclasts. Stem Cells. 1998;16(3):229–38.

    Article  CAS  PubMed  Google Scholar 

  54. Stitt TN, Conn G, Goret M, Lai C, Bruno J, Radzlejewski C, et al. The anticoagulation factor protein S and its relative, Gas6, are ligands for the Tyro 3/Axl family of receptor tyrosine kinases. Cell. 1995;80(4):661–70.

    Article  CAS  PubMed  Google Scholar 

  55. Carroll SH, Wigner NA, Kulkarni N, Johnston-Cox H, Gerstenfeld LC, Ravid K. A2B adenosine receptor promotes mesenchymal stem cell differentiation to osteoblasts and bone formation in vivo. J Biol Chem. 2012;287(19):15718–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Costa MA, Barbosa A, Neto E, Sá-e-Sousa A, Freitas R, Neves JM, et al. On the role of subtype selective adenosine receptor agonists during proliferation and osteogenic differentiation of human primary bone marrow stromal cells. J Cell Physiol. 2011;226(5):1353–66.

    Article  CAS  PubMed  Google Scholar 

  57. Evans BA, Elford C, Pexa A, Francis K, Hughes AC, Deussen A, et al. Human osteoblast precursors produce extracellular adenosine, which modulates their secretion of IL-6 and osteoprotegerin. J Bone Miner Res. 2006;21(2):228–36.

    Article  CAS  PubMed  Google Scholar 

  58. Gharibi B, Abraham AA, Ham J, Evans BAJ. Adenosine receptor subtype expression and activation influence the differentiation of mesenchymal stem cells to osteoblasts and adipocytes. J Bone Miner Res. 2011;26(9):2112–24.

    Article  CAS  PubMed  Google Scholar 

  59. Kara FM, Chitu V, Sloane J, Axelrod M, Fredholm BB, Stanley ER, et al. Adenosine A1 receptors (A1Rs) play a critical role in osteoclast formation and function. FASEB J. 2010;24(7):2325–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mediero A, Kara FM, Wilder T, Cronstein BN. Adenosine A(2A) receptor ligation inhibits osteoclast formation. Am J Pathol. 2012;180(2):775–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kara FM, Doty SB, Boskey A, Goldring S, Zaidi M, Fredholm BB, et al. Adenosine A(1) receptors regulate bone resorption in mice: adenosine A(1) receptor blockade or deletion increases bone density and prevents ovariectomy-induced bone loss in adenosine A(1) receptor-knockout mice. Arthritis Rheum. 2010;62(2):534–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hinton DJ, McGee-Lawrence ME, Lee MR, Kwong HK, Westendorf JJ, Choi DS. Aberrant bone density in aging mice lacking the adenosine transporter ENT1. PLoS One. 2014;9(2):e88818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan W. Lowery.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animal subjects performed by the any of the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shadmand, M., Jackson, K., Bender, C. et al. Bringing Attention to Lesser-known Bone Remodeling Pathways. Clinic Rev Bone Miner Metab 16, 95–102 (2018). https://doi.org/10.1007/s12018-018-9250-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-018-9250-3

Keywords

Navigation