Skip to main content
Log in

Sumoylation of p35 Modulates p35/Cyclin-Dependent Kinase (Cdk) 5 Complex Activity

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Cyclin-dependent kinase (Cdk) 5 is critical for central nervous system development and neuron-specific functions including neurite outgrowth as well as synaptic function and plasticity. Cdk5 activity requires association with one of the two regulatory subunits, called p35 and p39. p35 redistribution as well as misregulation of Cdk5 activity is followed by cell death in several models of neurodegeneration. Posttranslational protein modification by small ubiquitin-related modifier (SUMO) proteins (sumoylation) has emerged as key regulator of protein targeting and protein/protein interaction. Under cell-free in vitro conditions, we found p35 covalently modified by SUMO1. Using both biochemical and FRET-/FLIM-based approaches, we demonstrated that SUMO2 is robustly conjugated to p35 in cells and identified the two major SUMO acceptor lysines in p35, K246 and K290. Furthermore, different degrees of oxidative stress resulted in differential p35 sumoylation, linking oxidative stress that is encountered in neurodegenerative diseases to the altered activity of Cdk5. Functionally, sumoylation of p35 increased the activity of the p35/Cdk5 complex. We thus identified a novel neuronal SUMO target and show that sumoylation is a likely candidate mechanism for the rapid modulation of p35/Cdk5 activity in physiological situations as well as in disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amor, S., Peferoen, L. A., Vogel, D. Y., Breur, M., van der Valk, P., Baker, D., et al. (2014). Inflammation in neurodegenerative diseases–an update. Immunology, 142(2), 151–166.

    Article  CAS  PubMed  Google Scholar 

  • Asada, A., Yamamoto, N., Gohda, M., Saito, T., Hayashi, N., & Hisanaga, S. (2008). Myristoylation of p39 and p35 is a determinant of cytoplasmic or nuclear localization of active cyclin-dependent kinase 5 complexes. Journal of Neurochemistry, 106(3), 1325–1336.

    Article  CAS  PubMed  Google Scholar 

  • Bernier-Villamor, V., Sampson, D. A., Matunis, M. J., & Lima, C. D. (2002). Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell, 108(3), 345–356.

    Article  CAS  PubMed  Google Scholar 

  • Bossis, G., & Melchior, F. (2006). Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes. Molecular Cell, 21(3), 349–357.

    Article  CAS  PubMed  Google Scholar 

  • Chae, T., Kwon, Y. T., Bronson, R., Dikkes, P., Li, E., & Tsai, L. H. (1997). Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures, and adult lethality. Neuron, 18(1), 29–42.

    Article  CAS  PubMed  Google Scholar 

  • Choe, E. A., Liao, L., Zhou, J. Y., Cheng, D., Duong, D. M., Jin, P., et al. (2007). Neuronal morphogenesis is regulated by the interplay between cyclin-dependent kinase 5 and the ubiquitin ligase mind bomb 1. Journal of Neuroscience, 27(35), 9503–9512.

    Article  CAS  PubMed  Google Scholar 

  • Day, R. N., Booker, C. F., & Periasamy, A. (2008). Characterization of an improved donor fluorescent protein for Forster resonance energy transfer microscopy. Journal of Biomedial Optics, 13(3), 031203.

    Article  Google Scholar 

  • Desterro, J. M., Rodriguez, M. S., Kemp, G. D., & Hay, R. T. (1999). Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. Journal of Biological Chemistry, 274(15), 10618–10624.

    Article  CAS  PubMed  Google Scholar 

  • Dhavan, R., & Tsai, L. H. (2001). A decade of CDK5. Nature Reviews Molecular Cell Biology, 2(10), 749–759.

    Article  CAS  PubMed  Google Scholar 

  • Eckermann, K. (2013). SUMO and parkinson’s disease. Neuromolecular Med, 15(4), 737–759.

    Article  CAS  PubMed  Google Scholar 

  • Feligioni, M., & Nistico, R. (2013). SUMO: a (oxidative) stressed protein. Neuromolecular Medicine, 15(4), 707–719.

    Article  CAS  PubMed  Google Scholar 

  • Fu, X., Choi, Y. K., Qu, D., Yu, Y., Cheung, N. S., & Qi, R. Z. (2006). Identification of nuclear import mechanisms for the neuronal Cdk5 activator. Journal of Biological Chemistry, 281(51), 39014–39021.

    Article  CAS  PubMed  Google Scholar 

  • Gill, G. (2004). SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes & Development, 18(17), 2046–2059.

    Article  CAS  Google Scholar 

  • Golebiowski, F., Matic, I., Tatham, M. H., Cole, C., Yin, Y., Nakamura, A., et al. (2009). System-wide changes to SUMO modifications in response to heat shock. Science Signaling, 2(72), ra24.

  • Gong, L., Millas, S., Maul, G. G., & Yeh, E. T. (2000). Differential regulation of sentrinized proteins by a novel sentrin-specific protease. Journal of Biological Chemistry, 275(5), 3355–3359.

    Article  CAS  PubMed  Google Scholar 

  • Halliwell, B., Clement, M. V., & Long, L. H. (2000). Hydrogen peroxide in the human body. FEBS Letters, 486(1), 10–13.

    Article  CAS  PubMed  Google Scholar 

  • Hecker, C. M., Rabiller, M., Haglund, K., Bayer, P., & Dikic, I. (2006). Specification of SUMO1- and SUMO2-interacting motifs. Journal of Biological Chemistry, 281(23), 16117–16127.

    Article  CAS  PubMed  Google Scholar 

  • Hsiao, K., Bozdagi, O., & Benson, D. L. (2014). Axonal cap-dependent translation regulates presynaptic p35. Developmental Neurobiology, 74(3), 351–364.

    Article  CAS  PubMed  Google Scholar 

  • Jaffray, E. G., & Hay, R. T. (2006). Detection of modification by ubiquitin-like proteins. Methods, 38(1), 35–38.

    Article  CAS  PubMed  Google Scholar 

  • Kim, E. T., Kim, K. K., Matunis, M. J., & Ahn, J. H. (2009). Enhanced SUMOylation of proteins containing a SUMO-interacting motif by SUMO-Ubc9 fusion. Biochemical and Biophysical Research Communications, 388(1), 41–45.

    Article  CAS  PubMed  Google Scholar 

  • Krumova, P., Meulmeester, E., Garrido, M., Tirard, M., Hsiao, H. H., Bossis, G., et al. (2011). Sumoylation inhibits alpha-synuclein aggregation and toxicity. Journal of Cell Biology, 194(1), 49–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krumova, P., & Weishaupt, J. H. (2013). Sumoylation in neurodegenerative diseases. Cellular and Molecular Life Sciences, 70(12), 2123–2138.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z., David, G., Hung, K. W., DePinho, R. A., Fu, A. K., & Ip, N. Y. (2004). Cdk5/p35 phosphorylates mSds3 and regulates mSds3-mediated repression of transcription. Journal of Biological Chemistry, 279(52), 54438–54444.

    Article  CAS  PubMed  Google Scholar 

  • Macauley, M. S., Errington, W. J., Scharpf, M., Mackereth, C. D., Blaszczak, A. G., Graves, B. J., et al. (2006). Beads-on-a-string, characterization of ETS-1 sumoylated within its flexible N-terminal sequence. Journal of Biological Chemistry, 281(7), 4164–4172.

    Article  CAS  PubMed  Google Scholar 

  • Mahajan, R., Delphin, C., Guan, T., Gerace, L., & Melchior, F. (1997). A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell, 88(1), 97–107.

    Article  CAS  PubMed  Google Scholar 

  • Matunis, M. J., Coutavas, E., & Blobel, G. (1996). A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. Journal of Cell Biology, 135(6 Pt 1), 1457–1470.

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay, D., & Dasso, M. (2007). Modification in reverse: the SUMO proteases. Trends in Biochemical Sciences, 32(6), 286–295.

    Article  CAS  PubMed  Google Scholar 

  • Nagai, T., Ibata, K., Park, E. S., Kubota, M., Mikoshiba, K., & Miyawaki, A. (2002). A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nature Biotechnology, 20(1), 87–90.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, M. D., Lariviere, R. C., & Julien, J. P. (2001). Deregulation of Cdk5 in a mouse model of ALS: toxicity alleviated by perikaryal neurofilament inclusions. Neuron, 30(1), 135–147.

    Article  CAS  PubMed  Google Scholar 

  • Nikolic, M., Dudek, H., Kwon, Y. T., Ramos, Y. F., & Tsai, L. H. (1996). The cdk5/p35 kinase is essential for neurite outgrowth during neuronal differentiation. Genes & Development, 10(7), 816–825.

    Article  CAS  Google Scholar 

  • O’Hare, M. J., Kushwaha, N., Zhang, Y., Aleyasin, H., Callaghan, S. M., Slack, R. S., et al. (2005). Differential roles of nuclear and cytoplasmic cyclin-dependent kinase 5 in apoptotic and excitotoxic neuronal death. Journal of Neuroscience, 25(39), 8954–8966.

    Article  PubMed  Google Scholar 

  • Osuga, H., Osuga, S., Wang, F., Fetni, R., Hogan, M. J., Slack, R. S., et al. (2000). Cyclin-dependent kinases as a therapeutic target for stroke. Proceedings of the National Academy of Sciences USA, 97(18), 10254–10259.

    Article  CAS  Google Scholar 

  • Patrick, G. N., Zhou, P., Kwon, Y. T., Howley, P. M., & Tsai, L. H. (1998). p35, the neuronal-specific activator of cyclin-dependent kinase 5 (Cdk5) is degraded by the ubiquitin-proteasome pathway. Journal of Biological Chemistry, 273(37), 24057–24064.

    Article  CAS  PubMed  Google Scholar 

  • Patrick, G. N., Zukerberg, L., Nikolic, M., de la Monte, S., Dikkes, P., & Tsai, L. H. (1999). Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature, 402(6762), 615–622.

    Article  CAS  PubMed  Google Scholar 

  • Patzke, H., & Tsai, L. H. (2002). Calpain-mediated cleavage of the cyclin-dependent kinase-5 activator p39 to p29. Journal of Biological Chemistry, 277(10), 8054–8060.

    Article  CAS  PubMed  Google Scholar 

  • Poon, R. Y., Lew, J., & Hunter, T. (1997). Identification of functional domains in the neuronal Cdk5 activator protein. Journal of Biological Chemistry, 272(9), 5703–5708.

    Article  CAS  PubMed  Google Scholar 

  • Sahlgren, C. M., Pallari, H. M., He, T., Chou, Y. H., Goldman, R. D., & Eriksson, J. E. (2006). A nestin scaffold links Cdk5/p35 signaling to oxidant-induced cell death. EMBO Journal, 25(20), 4808–4819.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saitoh, H., & Hinchey, J. (2000). Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. Journal of Biological Chemistry, 275(9), 6252–6258.

    Article  CAS  PubMed  Google Scholar 

  • Sapetschnig, A., Rischitor, G., Braun, H., Doll, A., Schergaut, M., Melchior, F., et al. (2002). Transcription factor Sp3 is silenced through SUMO modification by PIAS1. EMBO Journal, 21(19), 5206–5215.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shea, T. B., Zheng, Y. L., Ortiz, D., & Pant, H. C. (2004). Cyclin-dependent kinase 5 increases perikaryal neurofilament phosphorylation and inhibits neurofilament axonal transport in response to oxidative stress. Journal of Neuroscience Research, 76(6), 795–800.

    Article  CAS  PubMed  Google Scholar 

  • Shin, E. J., Shin, H. M., Nam, E., Kim, W. S., Kim, J. H., Oh, B. H., et al. (2012). DeSUMOylating isopeptidase: a second class of SUMO protease. EMBO Reports, 13(4), 339–346.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shukla, V., Mishra, S. K., & Pant, H. C. (2011). Oxidative stress in neurodegeneration. Advance Pharmacology Science, 2011, 572634.

    Google Scholar 

  • Smith, P. D., Crocker, S. J., Jackson-Lewis, V., Jordan-Sciutto, K. L., Hayley, S., Mount, M. P., et al. (2003). Cyclin-dependent kinase 5 is a mediator of dopaminergic neuron loss in a mouse model of Parkinson’s disease. Proceedings of the National Academy of Sciences USA, 100(23), 13650–13655.

    Article  CAS  Google Scholar 

  • Su, S. C., & Tsai, L. H. (2011). Cyclin-dependent kinases in brain development and disease. Annual Review of Cell and Developmental Biology, 27, 465–491.

    Article  CAS  PubMed  Google Scholar 

  • Sun, K. H., Chang, K. H., Clawson, S., Ghosh, S., Mirzaei, H., Regnier, F., et al. (2011). Glutathione-S-transferase P1 is a critical regulator of Cdk5 kinase activity. Journal of Neurochemistry, 118(5), 902–914.

    Article  CAS  PubMed  Google Scholar 

  • Tan, T. C., Valova, V. A., Malladi, C. S., Graham, M. E., Berven, L. A., Jupp, O. J., et al. (2003). Cdk5 is essential for synaptic vesicle endocytosis. Nature Cell Biology, 5(8), 701–710.

    Article  CAS  PubMed  Google Scholar 

  • Tang, D., Chun, A. C., Zhang, M., & Wang, J. H. (1997). Cyclin-dependent kinase 5 (Cdk5) activation domain of neuronal Cdk5 activator. Evidence of the existence of cyclin fold in neuronal Cdk5a activator. Journal of Biological Chemistry, 272(19), 12318–12327.

    Article  CAS  PubMed  Google Scholar 

  • Tang, D., Yeung, J., Lee, K. Y., Matsushita, M., Matsui, H., Tomizawa, K., et al. (1995). An isoform of the neuronal cyclin-dependent kinase 5 (Cdk5) activator. Journal of Biological Chemistry, 270(45), 26897–26903.

    Article  CAS  PubMed  Google Scholar 

  • Tarricone, C., Dhavan, R., Peng, J., Areces, L. B., Tsai, L. H., & Musacchio, A. (2001). Structure and regulation of the CDK5-p25(nck5a) complex. Molecular Cell, 8(3), 657–669.

    Article  CAS  PubMed  Google Scholar 

  • Tatham, M. H., Jaffray, E., Vaughan, O. A., Desterro, J. M., Botting, C. H., Naismith, J. H., et al. (2001). Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. Journal of Biological Chemistry, 276(38), 35368–35374.

    Article  CAS  PubMed  Google Scholar 

  • Tsai, L. H., Delalle, I., Caviness, V. S, Jr, Chae, T., & Harlow, E. (1994). p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature, 371(6496), 419–423.

    Article  CAS  PubMed  Google Scholar 

  • van den Heuvel, S., & Harlow, E. (1993). Distinct roles for cyclin-dependent kinases in cell cycle control. Science, 262(5142), 2050–2054.

    Article  PubMed  Google Scholar 

  • Verstegen, A. M., Tagliatti, E., Lignani, G., Marte, A., Stolero, T., Atias, M., et al. (2014). Phosphorylation of synapsin I by cyclin-dependent kinase-5 sets the ratio between the resting and recycling pools of synaptic vesicles at hippocampal synapses. Journal of Neuroscience, 34(21), 7266–7280.

    Article  CAS  PubMed  Google Scholar 

  • Weishaupt, J. H., Kussmaul, L., Grotsch, P., Heckel, A., Rohde, G., Romig, H., et al. (2003). Inhibition of CDK5 is protective in necrotic and apoptotic paradigms of neuronal cell death and prevents mitochondrial dysfunction. Molecular and Cellular Neuroscience, 24(2), 489–502.

    Article  CAS  PubMed  Google Scholar 

  • Wittmann, C., Chockley, P., Singh, S. K., Pase, L., Lieschke, G. J., & Grabher, C. (2012). Hydrogen peroxide in inflammation: messenger, guide, and assassin. Advances in Hematology, 2012, 541471.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zukerberg, L. R., Patrick, G. N., Nikolic, M., Humbert, S., Wu, C. L., Lanier, L. M., et al. (2000). Cables links Cdk5 and c-Abl and facilitates Cdk5 tyrosine phosphorylation, kinase upregulation, and neurite outgrowth. Neuron, 26(3), 633–646.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Christine Poser and Claudia Fokken for excellent technical support. We thank Ron Hay (University of Dundee, Dundee, UK) for providing us with the His6-SUMO1 and His6-SUMO2 plasmids, Frauke Melchior (ZMBH, Heidelberg, Germany) for the components used for the in vitro sumoylation assay and Gertrude Bunt (University Medical Center Göttingen, Göttingen, Germany) for mVenus and mTFP plasmids. This work was supported by the Cluster of Excellence and DFG Research Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Katrin Eckermann or Jochen H. Weishaupt.

Additional information

Anja Büchner, Petranka Krumova, Katrin Eckermann, and Jochen H. Weishaupt have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Büchner, A., Krumova, P., Ganesan, S. et al. Sumoylation of p35 Modulates p35/Cyclin-Dependent Kinase (Cdk) 5 Complex Activity. Neuromol Med 17, 12–23 (2015). https://doi.org/10.1007/s12017-014-8336-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-014-8336-4

Keywords

Navigation