Skip to main content
Log in

Human BDNF Isoforms are Differentially Expressed in Cocaine Addicts and are Sorted to the Regulated Secretory Pathway Independent of the Met66 Substitution

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Differential BDNF gene (BDNF) promoter use leads to protein isoforms differing by 8 or 15 N-terminal residues (BDNF1 and BDNF2) whose regulation and function are not completely understood versus the well-known 247-aa BDNF “short” form. To describe how BDNF isoform levels were regulated by chronic drug use, we measured BDNF isoform-specific mRNA levels in different human brain regions from cocaine addicts relative to age, race, and gender-matched controls. The cocaine group had threefold higher levels of exon 4-specific (BDNF Short) mRNAs in cerebellum versus controls (P < 0.01). In cortex, exon 4 and exon 1-specific BDNF mRNA levels (BDNF1) were significantly reduced in the cocaine group relative to controls (40%, P < 0.01). We also tested the hypothesis that the signal peptides of isoforms BDNF1 and BDNF2 confer different functional properties and determined if the functional Val66Met polymorphism influenced these functions. In contrast to transfected AtT-20 cells producing BDNF Short, regulated secretion of BDNF1 or BDNF2 was not affected by the Met66 substitution. Hippocampal neurons producing BDNF1 or BDNF2 on either the Val66 or Met66 background were similarly distributed in dendrites and had similar colocalization patterns with the secretory granule marker Sec II. This pattern differed from neurons producing BDNF Short Met66, which had impaired trafficking. Together, these findings support a mechanism by which variant BDNF proteins can overcome the functional defect of the Met66 substitution and suggest how functional differences in BDNF may impact brain responses in disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aid, T., Kazantseva, A., Piirsoo, M., Palm, K., & Timmusk, T. (2007). Mouse and rat BDNF gene structure and expression revisited. Journal of Neuroscience Research, 85, 525–535. doi:10.1002/jnr.21139.

    Article  PubMed  CAS  Google Scholar 

  • Bendtsen, D. J., Nielsen, H., von Heijne, G., & Brunak, S. (2004). Improved prediction of signal peptides: SignalP 3.0. Journal of Molecular Biology, 340, 783–795. doi:10.1016/j.jmb.2004.05.028.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z. Y., Ieraci, A., Teng, H., Dall, H., Meng, C. X., Herrera, D. G., et al. (2005). Sortilin controls intracellular sorting of brain-derived neurotrophic factor to the regulated secretory pathway. Journal of Neuroscience, 25, 6156–6166. doi:10.1523/JNEUROSCI.1017-05.2005.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z. Y., Jing, D., Bath, K. G., Ieraci, A., Khan, T., Siao, C. J., et al. (2006). Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science, 314, 140–143. doi:10.1126/science.1129663.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z. Y., Patel, P. D., Sant, G., Meng, C. X., Teng, K. K., Hempstead, B. L., et al. (2004). Variant brain-derived neurotrophic factor (BDNF) (Met66) alters the intracellular trafficking and activity-dependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons. Journal of Neuroscience, 24, 4401–4411. doi:10.1523/JNEUROSCI.0348-04.2004.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, B., Furukawa, K., O’Keefe, J. A., Goodman, Y., Kihiko, M., Fabian, T., et al. (1995). Basic fibroblast growth factor selectively increases AMPA-receptor subunit GluR1 protein level and differentially modulates Ca2+ responses to AMPA and NMDA in hippocampal neurons. Journal of Neurochemistry, 65, 2525–2536.

    Article  PubMed  CAS  Google Scholar 

  • Cool, D. R., Normant, E., Shen, F., Chen, H. C., Pannell, L., Zhang, Y., et al. (1997). Carboxypeptidase E is a regulated secretory pathway sorting receptor: genetic obliteration leads to endocrine disorders in Cpe(fat) mice. Cell, 88, 73–83. doi:10.1016/S0092-8674(00)81860-7.

    Article  PubMed  CAS  Google Scholar 

  • Desmond, J. E., Chen, S. H. A., DeRosa, E., Pryor, M. R., Pfefferbaum, A., & Sullivan, E. V. (2003). Increased frontocerebellar activation in alcoholics during verbal working memory: an fMRI study. NeuroImage, 19, 1510–1520. doi:10.1016/S1053-8119(03)00102-2.

    Article  PubMed  Google Scholar 

  • Duman, C. H., Schlesinger, L., Russell, D. S., & Duman, R. S. (2008). Voluntary exercise produces antidepressant and anxiolytic behavioral effects in mice. Brain Research, 1199, 148–158.

    PubMed  CAS  Google Scholar 

  • Egan, M. F., Kojima, M., Callicott, J. H., Goldberg, T. E., Kolachana, B. S., Bertolino, A., et al. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112, 257–269. doi:10.1016/S0092-8674(03)00035-7.

    Article  PubMed  CAS  Google Scholar 

  • Ernfors, P., Wetmore, C., Olson, L., & Persson, H. (1990). Identification of cells in rat brain and peripheral tissues expressing mRNA for members of the nerve growth factor family. Neuron, 5, 511–526. doi:10.1016/0896-6273(90)90090-3.

    Article  PubMed  CAS  Google Scholar 

  • Fumagalli, F., Di Pasquale, L., Caffino, L., Racagni, G., & Riva, M. A. (2007). Repeated exposure to cocaine differently modulates BDNF mRNA and protein levels in rat striatum and prefrontal cortex. European Journal of Neuroscience, 26, 2756–2763. doi:10.1111/j.1460-9568.2007.05918.x.

    Article  PubMed  Google Scholar 

  • Goder, V., & Spiess, M. (2001). Topogenesis of membrane proteins: Determinants and dynamics. Federation of European Biochemical Societies Letters, 504, 87–93.

    PubMed  CAS  Google Scholar 

  • Goder, V., & Spiess, M. (2003). Molecular mechanism of signal sequence orientation in the endoplasmic reticulum. European Molecular Biology Organization Journal, 22, 3645–3653.

    CAS  Google Scholar 

  • Hartmann, E., Rapoport, T. A., & Lodish, H. F. (1989). Predicting the orientation of eurkaryotic membrane-spanning proteins. Proceedings of the National Academy of Sciences of the United States of America, 86, 5786–5790. doi:10.1073/pnas.86.15.5786.

  • Haubensak, W., Narz, F., Heumann, R., & Lessmann, V. (1998). BDNF-GFP containing secretory granules are localized in the vicinity of synaptic junctions of cultured cortical neurons. Journal of Cell Science, 111, 1483–1493.

    PubMed  CAS  Google Scholar 

  • Hegde, R. S., & Bernstein, H. D. (2006). The surprising complexity of signal sequences. Trends in Biochemical Science, 31, 563–571. doi:10.1016/j.tibs.2006.08.004.

    Article  CAS  Google Scholar 

  • Hempstead, B. L. (2006). Dissecting the diverse actions of pro- and mature neurotrophins. Current Alzheimer Research, 3, 19–24. doi:10.2174/156720506775697061.

    Article  PubMed  CAS  Google Scholar 

  • Hester, R., & Garavan, H. (2004). Executive dysfunction in cocaine addiction: Evidence for discordant frontal, cingulate, and cerebellar activity. Journal of Neuroscience, 24, 11017–11022. doi:10.1523/JNEUROSCI.3321-04.2004.

    Article  PubMed  CAS  Google Scholar 

  • Higy, M., Junne, T., & Spiess, M. (2004). Topogenesis of membrane proteins at the endoplasmic reticulum. Biochemistry, 43, 12716–12722. doi:10.1021/bi048368m.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, X., Tian, F., Du, Y., Copeland, N. G., Jenkins, N. A., Tessarollo, L., et al. (2008). BHLHB2 controls Bdnf promoter 4 activity and neuronal excitability. Journal of Neuroscience, 28, 1118–1130. doi:10.1523/JNEUROSCI.2262-07.2008.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, X., Tian, F., Mearow, K., Okagaki, P., Lipsky, R. H., & Marini, A. M. (2005a). The excitoprotective effect of N-methyl-D-aspartate is mediated by a BDNF autocrine loop in cultured hippocampal neurons. Journal of Neurochemistry, 94, 713–722. doi:10.1111/j.1471-4159.2005.03200.x.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, X., Xu, K., Hoberman, J., Tian, F., Marko, A. J., Waheed, J., et al. (2005b). BDNF and mood disorders: A novel functional promoter polymorphism and Val66Met are associated with anxiety but have opposing effects. Neuropsychopharmacology, 30, 1353–1361.

    PubMed  CAS  Google Scholar 

  • Lipsky, R. H., & Marini, A. M. (2007). Brain-derived neurotrophic factor in neuronal survival and behavior-related plasticity. Annals of the New York Academy of Science, 1122, 130–143. doi:10.1196/annals.1403.009.

    Article  CAS  Google Scholar 

  • Liu, Q. R., Lu, L., Zhu, X. G., Gong, J. P., Shaham, Y., & Uhl, G. R. (2006). Rodent BDNF genes, novel promoters, novel splice variants, and regulation by cocaine. Brain Research, 1067, 1–12. doi:10.1016/j.brainres.2005.10.004.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Q. R., Walther, D., Drgon, T., Polesskaya, O., Lesnick, T. G., Strain, K. J., et al. (2005). Human brain derived neurotrophic factor (BDNF) genes, splicing patterns, and assessments of associations with substance abuse and Parkinson’s disease. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 134, 93–103. doi:10.1002/ajmg.b.30109.

    Article  Google Scholar 

  • Lou, H., Kim, S. K., Zaitsev, E., Snell, C. R., Lu, B., & Loh, Y. P. (2005). Sorting and activity-dependent secretion of BDNF require interaction of a specific motif with the sorting receptor carboxypeptidase e. Neuron, 45, 245–255. doi:10.1016/j.neuron.2004.12.037.

    Article  PubMed  CAS  Google Scholar 

  • Lu, B. (2003). BDNF and activity-dependent synaptic modulation. Learning and Memory, 10, 86–98. doi:10.1101/lm.54603.

    Article  PubMed  Google Scholar 

  • Marini, A. M., Jiang, X., Wu, X., Tian, F., Zhu, D., Okagaki, P., et al. (2004). Role of brain-derived neurotrophic factor and NF-kappaB in neuronal plasticity and survival: from genes to phenotype. Restorative Neurology and Neuroscience, 22, 121–130.

    PubMed  CAS  Google Scholar 

  • Martinowich, K., Manji, H., & Lu, B. (2007). New insights into BDNF function in depression and anxiety. Nature Neuroscience, 10, 1089–1093. doi:10.1038/nn1971.

    Article  PubMed  CAS  Google Scholar 

  • Mash, D. C., Pablo, J., Ouyang, Q., Hearn, W. L., & Izenwasser, S. (2002). Dopamine transport function is elevated in cocaine users. Journal of Neurochemistry, 81, 292–300. doi:10.1046/j.1471-4159.2002.00820.x.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen, H., & Krogh, A. (1998). Prediction of signal peptides and signal anchors by a hidden Markov model. In Proceedings of the Sixth International Conference on Intelligent Systems for Molecular Biology (ISMB 6) (pp. 122–130). AAAI Press, Menlo Park.

  • Phillips, H. S., Hains, J. M., Laramee, G. R., Rosenthal, A., & Winslow, J. W. (1990). Widespread expression of BDNF but not NT3 by target areas of basal forebrain cholinergic neurons. Science, 250, 290–294. doi:10.1126/science.1688328.

    Article  PubMed  CAS  Google Scholar 

  • Pruunsild, P., Kazantseva, A., Aid, T., Palm, K., & Timmusk, T. (2007). Dissecting the human BDNF locus: Bidirectional transcription, complex splicing, and multiple promoters. Genomics, 90, 397–406. doi:10.1016/j.ygeno.2007.05.004.

    Article  PubMed  CAS  Google Scholar 

  • Ruttenber, A. J., Lawler-Heavner, J., Yin, M., Wetli, C. V., Hearn, W. L., & Mash, D. C. (1997). Fatal excited delirium following cocaine use: Epidemiologic findings provide new evidence for mechanisms of cocaine toxicity. Journal of Forensic Science, 42, 25–31.

    CAS  Google Scholar 

  • Schmahmann, J. D. P., & Pandya, D. A. (1997). The cerebellum and cognition (Vol. 41, pp. 31–60). San Diego: Academic Press.

    Google Scholar 

  • Stephens, B. G., Jentzen, J. M., Karch, S., Wetli, C. V., & Mash, D. C. (2004). Criteria for the interpretation of cocaine levels in human biological samples and their relation to the cause of death. Journal of Forensic Medicine and Pathology, 25, 1–11. doi:10.1097/01.paf.0000118960.58334.a9.

    Article  Google Scholar 

  • Thoenen, H. (1995). Neurotrophins and neuronal plasticity. Science, 270, 593–596. doi:10.1126/science.270.5236.593.

    Article  PubMed  CAS  Google Scholar 

  • Tongiorgi, E., Armellin, M., Giulianini, P. G., Bregola, G., Zucchini, S., Paradiso, B., et al. (2004). Brain-derived neurotrophic factor mRNA and protein are targeted to discrete dendritic laminas by events that trigger epileptogenesis. Journal of Neuroscience, 24, 6842–6852. doi:10.1523/JNEUROSCI.5471-03.2004.

    Article  PubMed  CAS  Google Scholar 

  • von Heijne, G. (1986). Net N-C charge imbalance may be important for signal sequence function in bacteria. Journal of Molecular Biology, 192, 287–290. doi:10.1016/0022-2836(86)90365-7.

    Article  Google Scholar 

  • Wu, Y. J., Kruttgen, A., Moller, J. C., Shine, D., Chan, J. R., Shooter, E. M., et al. (2004). Nerve growth factor, brain-derived neurotrophic factor, and neurotrophin-3 are sorted to dense-core vesicles and released via the regulated pathway in primary rat cortical neurons. Journal of Neuroscience Research, 75, 825–834. doi:10.1002/jnr.20048.

    Article  PubMed  CAS  Google Scholar 

  • Yan, Q., Rosenfeld, R. D., Matheson, C. R., Hawkins, N., Lopez, O. T., Bennett, L., et al. (1997). Expression of brain-derived neurotrophic factor in the adult rat central nervous system. Neuroscience, 78, 431–448. doi:10.1016/S0306-4522(96)00613-6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by NIH intramural grant NIAAA Z01-AA00325 (RHL) and extramural grant F-192EG-C1 from the Defense Brain and Spinal Cord Injury Program (AMM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert H. Lipsky.

Electronic supplementary material

Below are the links to the electronic supplementary materials.

MOESM1 (DOC 30 kb)

Fig. S1

BDNF–GFP fusion protein predicts a furin proprotein convertase cleavage site. The pre-BDNF–GFP cDNA initially used in functional studies contained a furin site which destabilized the fusion protein. Mutations in of the original plasmid construct were created, replacing two arginine residues with two glycine residues (TIFF 139 kb)

Fig. S2

Enhanced stability of BDNF–GFP fusion proteins following site-directed mutagenesis. Left panel AtT-20 cells were transfected with each BDNF-GFP isoform (S = BDNF Short, 1 = BDNF1, 2 = BDNF2). Cell lysates were used for protein blots. BDNF Short-GFP and BDNF2-GFP were unstable prior mutagenesis. To visualize free GFP, cells were also transfected with pGFP-N1 (Clontech/Takara Bio, Mountain View, CA). Position of BDNF–GFP fusion proteins and free GFP detected with anti-GFP antibody are indicated by the arrows. Right panel: Stripped blots were reincubated with anti-β-actin antibody to show equal loading (TIFF 206 kb)

Fig. S3

Detecting pre-proBDNF isoform-specific cDNAs in postmortem human cerebellum. RT-PCR using specific primer sets for each BDNF isoform cDNA. RT-PCR with a primer pair 7A resulted in a band (molecular size 264 bp) for BDNF2 in addition to a smaller band (210 bp) for BDNF Short Form, due to alternative splicing of exon 7. RT-PCR with primer pair exon 7B/terminal coding exon (exon 9, Pruunsild et al. 2007) produced only the 264 bp band for BDNF 2. Each BDNF cDNA was verified by sequence analysis (TIFF 154 kb)

Fig. S4

Expression of BDNF by transfected AtT-20 cells. AtT-20 cells were transfected with BDNF-GFP Short Val, BDNF 1 Val, BDNF2 Val, BDNF Short Met, BDNF1 Met, or BDNF2 Met constructs. Protein blots were developed with an anti-GFP antibody. Upper panel Cell lysates were prepared 48 h posttransfection and BDNF–GFP fusion proteins visualized. Lower panel Blot from upper panel was stripped of protein and re-incubated with anti-β-actin to show equal loading. Both pro and mature forms of BDNF1 and BDNF2 were increased compared with AtT-20 cells expressing the BDNF Short (S). Presence of the Met66 substitution in the prodomain did not affect expression of any of the BDNF isoforms (TIFF 111 kb)

Fig. S5

Representative image of a BDNF–GFP expressing neuron. Arrows show distribution of the fusion protein (TIFF 479 kb)

Fig. S6

Signal P prediction of signal peptides, nonsignal sequences, and cleavage sites in BDNF1. Probabilities for the N-region, H-region, and C-region are shown as peaks above the primary amino acid sequence for the BDNF1 signal peptide. The predicted signal peptidase cleavage site is shown by a vertical red line with a probability of cleavage of 0.681 between residues 26 and 27 (TIFF 189 kb)

Fig. S7

Signal P prediction of signal peptides, nonsignal sequences, and cleavage sites in BDNF2. Probabilities for the N-region, H-region, and C-region are shown as peaks above the primary amino acid sequence for the BDNF2 signal peptide. The predicted cleavage site by signal peptidase, shown by the vertical red line, has a site selection probability of 0.043 for cleavage between residues 33 and 34 (TIFF 181 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, X., Zhou, J., Mash, D.C. et al. Human BDNF Isoforms are Differentially Expressed in Cocaine Addicts and are Sorted to the Regulated Secretory Pathway Independent of the Met66 Substitution. Neuromol Med 11, 1–12 (2009). https://doi.org/10.1007/s12017-008-8051-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-008-8051-0

Keywords

Navigation