Health Effects of Trimellitic Anhydride Occupational Exposure: Insights from Animal Models and Immunosurveillance Programs


Acid anhydrides are used by chemical industries as plasticizers. Trimellitic acid (TMA) is an acid anhydride widely utilized in factories to produce paints, varnishes, and plastics. In addition to causing direct irritant effects, TMA can augment antibody responses in exposed factory workers leading to occupational asthma. Therefore, industries producing TMA have implemented occupational immunosurveillance programs (OISPs) to ensure early diagnosis and medical management, involving exposure reduction/ complete removal of sensitized workers from exposure areas. Multiple animal models (mice strains, rat stains, guinea pig, swine) with different exposure patterns (dermal, nasal, vapor inhalation exposures for different time frames) have been described to elucidate the pathophysiology of TMA exposure. In TMA factories, in spite of implementing advanced environmental controls and personal protective measures to limit exposure, workers become TMA-sensitized. Animal models revealed sIgG, sIgE, sIgA, and sIgM along with pulmonary lesions, cellular infiltrates, alveolar hemorrhage, and pneumonitis associated with TMA exposure. Molecular studies showed involvement of specific functional gene clusters related to cytokine and chemokine responses, lung remodeling, and arginase function. However, thus far, there is no evidence supporting fetotoxic or carcinogenic effects of TMA. OISP data showed IgG and IgE responses in exposed factory workers. Interestingly, timelines for detectable sIgG response, in conjunction with its magnitude, have been shown to be a predictor for future sIgE response. OISPs have been very successful so far at creating a healthy and safe working environment for TMA-exposed factory workers.

Trimellitic Acid (TMA), used to produce paints, varnishes and plastics, can cause irritant-mediated and immune-mediated occupational health problems. NCBI pubmed search indicated that multiple animal models (different animal types, with chronic vs. acute exposure type, using TMA dust/suspension applied via dermal or other routes) have been used by investigators to elucidate the pathobiology of TMA-exposure. Several outcomes have been measured including humoral, lung/ airway, lymph nodes and dermal/ ear thickening responses. Studies on human subjects have been conducted mostly as parts of Occupational immunosurveillance programs (OISPs) implemented to identify TMA-sensitized workers (using ImmunoCAP and Skin prick testing), monitoring them longitudinally and their medical management including exposure reduction/ complete removal of sensitized workers from exposure areas. Clinical management also includes identification of irritant-induced and/ or immune-mediated outcomes of TMA occupational exposure. Collectively, these studies have led to important insights into the pathomechanism of TMA-exposure and have been very successful at creating a safe working environment for TMA-exposed factory workers.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Balmes J, Becklake M, Blanc P, Henneberger P, Kreiss K, Mapp C, Milton D, Schwartz D, Toren K, Viegi G, Environmental and Occupational Health Assembly, American Thoracic Society (2003) American Thoracic Society statement: occupational contribution to the burden of airway disease. Am J Respir Crit Care Med 167(5):787–797

    PubMed  Google Scholar 

  2. 2.

    Chemical Datasheet : Trimellitic Anhydride, National Oceanic and Atmospheric Administration (Cameo Chemicals), Accessed: July 12th, 2017

  3. 3.

    Baur X, Czuppon AB, Rauluk I, Zimmermann FB, Schmitt B, Egen-Korthaus M, Tenkhoff N, Degens PO (1995) A clinical and immunological study on 92 workers occupationally exposed to anhydrides. Int Arch Occup Environ Health 67(6):395–403

    CAS  PubMed  Google Scholar 

  4. 4.

    Bernstein DI, Patterson R, Zeiss CR (1982) Clinical and immunologic evaluation of trimellitic anhydride-and phthalic anhydride-exposed workers using a questionnaire with comparative analysis of enzyme-linked immunosorbent and radioimmunoassay studies. J Allergy Clin Immunol 69(3):311–318

    CAS  PubMed  Google Scholar 

  5. 5.

    Quirce, S. and J.A. Bernstein, Old and new causes of occupational asthma. Immunol Allergy Clin North Am. 31(4): p. 677–98, v

  6. 6.

    Zeiss CR et al (1977) Trimellitic anhydride-induced airway syndromes: clinical and immunologic studies. J Allergy Clin Immunol 60(2):96–103

    CAS  PubMed  Google Scholar 

  7. 7.

    Zeiss CR et al (1982) Clinical and immunologic evaluation of trimellitic anhydride workers in multiple industrial settings. J Allergy Clin Immunol 70(1):15–18

    CAS  PubMed  Google Scholar 

  8. 8.

    Bernstein JA, Ghosh D, Sublett WJ, Wells H, Levin L (2011) Is trimellitic anhydride skin testing a sufficient screening tool for selectively identifying TMA-exposed workers with TMA-specific serum IgE antibodies? J Occup Environ Med 53(10):1122–1127

    CAS  PubMed  Google Scholar 

  9. 9.

    Pope, A., R. Patterson, and H. Burge, In Indoor Allergens: Assessing and Controlling Adverse Health Effects. 1993

  10. 10.

    Trimellitic Anhydride Health and safety guide (1992)- International Program on Chemical safety, World Heath Organization

  11. 11.

    Rushing, L.G., J.R. Althaus, and H.C. Thompson, Simultaneous determination of trimellitic anhydride and its trimellitic acid impurity by GC/FID. J Anal Toxicol 6(6):290–293, 1982. 6(6): p. 290–293

  12. 12.

    Ayyadurai SM, Worrall AD, Bernstein JA, Angelopoulos AP (2010) Perfluorosulfonic acid membrane catalysts for optical sensing of anhydrides in the gas phase. Anal Chem 82(14):6265–6272

    CAS  PubMed  Google Scholar 

  13. 13.

    Topping MD et al (1986) Specificity of the human IgE response to inhaled acid anhydrides. J Allergy Clin Immunol 77(6):834–842

    CAS  PubMed  Google Scholar 

  14. 14.

    Ghosh D, Clay C, Bernstein JA (2018) The utility of monitoring trimellitic anhydride (TMA)-specific IgG to predict IgE-mediated sensitization in an immunosurveillance program. Allergy 73(5):1075–1083

    CAS  PubMed  Google Scholar 

  15. 15.

    Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 10(1):1523

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Grammer LC, Shaughnessy MA, Zeiss CR, Greenberger PA, Patterson R (1997) Review of trimellitic anhydride (TMA) induced respiratory response. Allergy Asthma Proc 18(4):235–237

    CAS  PubMed  Google Scholar 

  18. 18.

    Kaplan V, Baur X, Czuppon A, Rilegger M, Russi E, Speich R (1993) Pulmonary hemorrhage due to inhalation of vapor containing pyromellitic dianhydride. Chest 104(2):644–645

    CAS  PubMed  Google Scholar 

  19. 19.

    Patterson R, Addington W, Banner AS, Byron GE, Franco M, Herbert FA, Nicotra MB, Pruzansky JJ, Rivera M, Roberts M, Yawn D, Zeiss CR (1979) Antihapten antibodies in workers exposed to trimellitic anhydride fumes: a potential immunopathogenetic mechanism for the trimellitic anhydride pulmonary disease--anemia syndrome. Am Rev Respir Dis 120(6):1259–1267

    CAS  PubMed  Google Scholar 

  20. 20.

    Zeiss CR, Mitchell JH, Peenen V, Harris J, Levitz D (1990) A twelve-year clinical and immunologic evaluation of workers involved in the manufacture of trimellitic anhydride (TMA). Allergy Proc 11(2):71–77

    CAS  PubMed  Google Scholar 

  21. 21.

    Zeiss CR, Mitchell JH, van Peenen PFD, Kavich D, Collins MJ, Grammer L, Shaughnessy M, Levitz D, Henderson J, Patterson R (1992) A clinical and immunologic study of employees in a facility manufacturing trimellitic anhydride. Allergy Proc 13(4):193–198

    CAS  PubMed  Google Scholar 

  22. 22.

    Grammer LC, Ditto AM, Tripathi A, Harris KE (2002) Prevalence and onset of rhinitis and conjunctivitis in subjects with occupational asthma caused by trimellitic anhydride (TMA). J Occup Environ Med 44(12):1179–1181

    CAS  PubMed  Google Scholar 

  23. 23.

    Grammer L, Shaughnessy M, Kenamore B (1998) Utility of antibody in identifying individuals who have or will develop anhydride-induced respiratory disease. Chest 114(4):1199–1202

    CAS  PubMed  Google Scholar 

  24. 24.

    Grammer LC, Shaughnessy MA, Kenamore BD, Yarnold PR (1999) A clinical and immunologic study to assess risk of TMA-induced lung disease as related to exposure. J Occup Environ Med 41(12):1048–1051

    CAS  PubMed  Google Scholar 

  25. 25.

    Barker RD, van Tongeren MJA, Harris JM, Gardiner K, Venables KM, Newman Taylor AJ (2000) Risk factors for bronchial hyperresponsiveness in workers exposed to acid anhydrides. Eur Respir J 15(4):710–715

    CAS  PubMed  Google Scholar 

  26. 26.

    Howe W et al (1983) Tetrachlorophthalic anhydride asthma: evidence for specific IgE antibody. J Allergy Clin Immunol 71(1 Pt 1):5–11

    CAS  PubMed  Google Scholar 

  27. 27.

    Barker RD, van Tongeren MJ, Harris JM, Gardiner K, Venables KM, Newman Taylor AJ (1998) Risk factors for sensitisation and respiratory symptoms among workers exposed to acid anhydrides: a cohort study. Occup Environ Med 55(10):684–691

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Baur X, Czuppon A (1995) Diagnostic validation of specific IgE antibody concentrations, skin prick testing, and challenge tests in chemical workers with symptoms of sensitivity to different anhydrides. J Allergy Clin Immunol 96(4):489–494

    CAS  PubMed  Google Scholar 

  29. 29.

    Grammer, L.C. and R. Patterson, Athma in the workplace. 1999, CRC Press. p. 159–172

  30. 30.

    Index of Chemical Names: TRIMELLITIC ANH., Accessed: July 12th, 2017

  31. 31.

    Toxnet: Toxicology Data network - Trimellitic Anhydride (CASRN: 552–30-7)., Accessed: 15th July, 2017

  32. 32.

    International programme on Chemical Safety (IPCS) : TRIMELLITIC ANHYDRIDE & TRIMELLITIC ACID., Accessed 15th July, 2017

  33. 33.

    Chandler MJ et al (1987) Levels and specificity of antibody in bronchoalveolar lavage (BAL) and serum in an animal model of trimellitic anhydride-induced lung injury. J Allergy Clin Immunol 80(2):223–229

    CAS  PubMed  Google Scholar 

  34. 34.

    Pullerits T, Dahlgren U, Skoogh BE, Lötvall J (1997) Development of antigen-specific IgE after sensitisation with trimellitic anhydride in rats is attenuated by glucocorticoids and cyclosporin a. Int Arch Allergy Immunol 112(3):279–286

    CAS  PubMed  Google Scholar 

  35. 35.

    Dykewicz MS, Patterson R, Harris KE (1988) Induction of antigen-specific bronchial reactivity to trimellityl-human serum albumin by passive transfer of serum from humans to rhesus monkeys. J Lab Clin Med 111(4):459–465

    CAS  PubMed  Google Scholar 

  36. 36.

    Zeiss CR et al (1987) A model of immunologic lung injury induced by trimellitic anhydride inhalation: antibody response. J Allergy Clin Immunol 79(1):59–63

    CAS  PubMed  Google Scholar 

  37. 37.

    Leach CL, Hatoum NS, Ratajczak HV, Zeiss CR, Roger JC, Garvin PJ (1987) The pathologic and immunologic response to inhaled trimellitic anhydride in rats. Toxicol Appl Pharmacol 87(1):67–80

    CAS  PubMed  Google Scholar 

  38. 38.

    Zeiss CR, Leach CL, Smith LJ, Levitz D, Hatoum NS, Garvin PJ, Patterson R (1988) A serial immunologic and histopathologic study of lung injury induced by trimellitic anhydride. Am Rev Respir Dis 137(1):191–196

    CAS  PubMed  Google Scholar 

  39. 39.

    Zeiss CR, Leach CL, Levitz D, Hatoum NS, Garvin PJ, Patterson R (1989) Lung injury induced by short-term intermittent trimellitic anhydride (TMA) inhalation. J Allergy Clin Immunol 84(2):219–223

    CAS  PubMed  Google Scholar 

  40. 40.

    Arts JH et al (2003) Respiratory allergy and pulmonary irritation to trimellitic anhydride in Brown Norway rats. Toxicol Appl Pharmacol 187(1):38–49

    CAS  PubMed  Google Scholar 

  41. 41.

    Pauluhn J et al (2002) Respiratory hypersensitivity to trimellitic anhydride in Brown Norway rats: a comparison of endpoints. J Appl Toxicol 22(2):89–97

    CAS  PubMed  Google Scholar 

  42. 42.

    Vanoirbeek JA et al (2006) Validation of a mouse model of chemical-induced asthma using trimellitic anhydride, a respiratory sensitizer, and dinitrochlorobenzene, a dermal sensitizer. J Allergy Clin Immunol 117(5):1090–1097

    CAS  PubMed  Google Scholar 

  43. 43.

    Yan ZQ, Hansson GK, Skoogh BE, Lötvall JO (1995) Induction of nitric oxide synthase in a model of allergic occupational asthma. Allergy 50(9):760–764

    CAS  PubMed  Google Scholar 

  44. 44.

    Kuper CF et al (2008) Molecular characterization of trimellitic anhydride-induced respiratory allergy in Brown Norway rats. Toxicol Pathol 36(7):985–998

    CAS  PubMed  Google Scholar 

  45. 45.

    Dearman RJ, Kimber I (1991) Differential stimulation of immune function by respiratory and contact chemical allergens. Immunology 72(4):563–570

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Hayes JP et al (1992) Specific immunological and bronchopulmonary responses following intradermal sensitization to free trimellitic anhydride in guinea pigs. Clin Exp Allergy 22(7):694–700

    CAS  PubMed  Google Scholar 

  47. 47.

    Hayes JP, Daniel R, Tee RD, Barnes PJ, Taylor AJN, Chung KF (1992) Bronchial hyperreactivity after inhalation of trimellitic anhydride dust in guinea pigs after intradermal sensitization to the free hapten. Am Rev Respir Dis 146(5 Pt 1):1311–1314

    CAS  PubMed  Google Scholar 

  48. 48.

    Hayes JP, Lotvall JO, Baraniuk J, Daniel R, Barnes PJ, Taylor AJN, Chung KF (1992) Bronchoconstriction and airway microvascular leakage in guinea pigs sensitized with trimellitic anhydride. Am Rev Respir Dis 146(5 Pt 1):1306–1310

    CAS  PubMed  Google Scholar 

  49. 49.

    Hayes JP, Lotvall JO, Barnes PJ, Newman Taylor AJ, Chung KF (1992) Involvement of inflammatory mediators in the airway responses to trimellitic anhydride in sensitized guinea-pigs. Br J Pharmacol 106(4):828–832

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Arakawa H et al (1993) Airway allergy to trimellitic anhydride in guinea pigs: different time courses of IgG1 titer and airway responses to allergen challenge. J Allergy Clin Immunol 92(3):425–434

    CAS  PubMed  Google Scholar 

  51. 51.

    Adenuga, D., et al., Differential gene expression responses distinguish contact and respiratory sensitizers and nonsensitizing irritants in the local lymph node assay. Toxicol Sci. 126(2): p. 413–25

  52. 52.

    Ryan CA, Dearman RJ, Kimber I, Gerberick F (1998) Inducible interleukin 4 (IL-4) production and mRNA expression following exposure of mice to chemical allergens. Toxicol Lett 94(1):1–11

    CAS  PubMed  Google Scholar 

  53. 53.

    Adenuga D, Woolhiser MR, Gollapudi BB, Boverhof DR (2012) Differential gene expression responses distinguish contact and respiratory sensitizers and nonsensitizing irritants in the local lymph node assay. Toxicol Sci 126(2):413–425

    CAS  PubMed  Google Scholar 

  54. 54.

    Ryan, B.M., Teratological evaluation of trimellitic anhydride (TMA) in rats and guinea pigs. Submitted in partial fulfilment of the requirements for the degree of Master of Science in Biology in the School of Advanced Studies of Illinois Institute of Technology, Chicago, Illinois., 1998

  55. 55.

    Li M, Fan X, Ji L, Fan Y, Xu L (2019) Exacerbating effects of trimellitic anhydride in ovalbumin-induced asthmatic mice and the gene and protein expressions of TRPA1, TRPV1, TRPV2 in lung tissue. Int Immunopharmacol 69:159–168

    CAS  PubMed  Google Scholar 

  56. 56.

    Greene AL, Rutherford MS, Regal RR, Flickinger GH, Hendrickson JA, Giulivi C, Mohrman ME, Fraser DG, Regal JF (2005) Arginase activity differs with allergen in the effector phase of ovalbumin- versus trimellitic anhydride-induced asthma. Toxicol Sci 88(2):420–433

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Sabo-Attwood T, Ramos-Nino M, Bond J, Butnor KJ, Heintz N, Gruber AD, Steele C, Taatjes DJ, Vacek P, Mossman BT (2005) Gene expression profiles reveal increased mClca3 (Gob5) expression and mucin production in a murine model of asbestos-induced fibrogenesis. Am J Pathol 167(5):1243–1256

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Puchelle E, Bajolet O, Abely M (2002) Airway mucus in cystic fibrosis. Paediatr Respir Rev 3(2):115–119

    PubMed  Google Scholar 

  59. 59.

    Thai P, Chen Y, Dolganov G, Wu R (2005) Differential regulation of MUC5AC/Muc5ac and hCLCA-1/mGob-5 expression in airway epithelium. Am J Respir Cell Mol Biol 33(6):523–530

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    O'Neill L (2001) Gob genes, mucus and asthma. Trends Immunol 22(7):353–354

    PubMed  Google Scholar 

  61. 61.

    Ghosh, D., I. Lewkowich, and J.A. Bernstein, Dendritic Cell Differential Gene Expression Associated with the Irritant Versus Allergenic Effect of TMA Exposure.137(S2): p. AB193

  62. 62.

    Patterson R, Zeiss CR, Roberts M, Pruzansky JJ, Wolkonsky P, Chacon R (1978) Human antihapten antibodies in trimellitic anhydride inhalation reactions. Immunoglobulin classes of anti-trimellitic anhydride antibodies and hapten inhibition studies. J Clin Invest 62(5):971–978

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Patterson R, Harris KE, Stopford W, van der Heiden G, Grammer LC, Bunn W (1988) Irritant symptoms and immunologic responses to multiple chemicals: importance of clinical and immunologic correlations. Int Arch Allergy Appl Immunol 85(4):467–471

    CAS  PubMed  Google Scholar 

  64. 64.

    McGrath KG et al (1984) Four-year evaluation of workers exposed to trimellitic anhydride. A brief report. J Occup Med 26(9):671–675

    CAS  PubMed  Google Scholar 

  65. 65.

    Boxer MB et al (1987) Six-year clinical and immunologic follow-up of workers exposed to trimellitic anhydride. J Allergy Clin Immunol 80(2):147–152

    CAS  PubMed  Google Scholar 

  66. 66.

    Nicholson PJ, Cullinan P, Taylor AJ, Burge PS, Boyle C (2005) Evidence based guidelines for the prevention, identification, and management of occupational asthma. Occup Environ Med 62(5):290–299

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Slavin RG (2005) The allergist and the workplace: occupational asthma and rhinitis. Allergy Asthma Proc 26(4):255–261

    PubMed  Google Scholar 

  68. 68.

    Vandenplas O (2010) Asthma and rhinitis in the workplace. Curr Allergy Asthma Rep 10(5):373–380

    PubMed  Google Scholar 

  69. 69.

    Conner PR (2002) Experience with early detection of toluene diisocyanate-associated occupational asthma. Appl Occup Environ Hyg 17(12):856–862

    PubMed  Google Scholar 

  70. 70.

    Swierczynska-Machura D et al (2015) Occupational exposure to diisocyanates in polyurethane foam factory workers. Int J Occup Med Environ Health 28(6):985–998

    PubMed  Google Scholar 

  71. 71.

    Wisnewski AV (2007) Developments in laboratory diagnostics for isocyanate asthma. Curr Opin Allergy Clin Immunol 7(2):138–145

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Nielsen J, Welinder H, Schütz A, Skerfving S (1988) Specific serum antibodies against phthalic anhydride in occupationally exposed subjects. J Allergy Clin Immunol 82(1):126–133

    CAS  PubMed  Google Scholar 

  73. 73.

    Bernstein DI et al (1983) The relationship of airborne trimellitic anhydride concentrations to trimellitic anhydride--induced symptoms and immune responses. J Allergy Clin Immunol 72(6):709–713

    CAS  PubMed  Google Scholar 

  74. 74.

    Li CY, Sung FC (1999) A review of the healthy worker effect in occupational epidemiology. Occup Med (Lond) 49(4):225–229

    CAS  Google Scholar 

  75. 75.

    Shah D (2009) Healthy worker effect phenomenon. Indian J Occup Environ Med 13(2):77–79

    PubMed  PubMed Central  Google Scholar 

  76. 76.

    Bernstein, J.A., Occupational Asthma, in Allergy and Asthma: Practical Diagnosis and Management, M. Mahmoudi, Editor. 2016, Springer International Publishing: Cham p 253-270

  77. 77.

    Malo JL, Lemiere C, Gautrin D, Labrecque M (2004) Occupational asthma. Curr Opin Pulm Med 10(1):57–61

    PubMed  Google Scholar 

  78. 78.

    Grammer LC, Shaughnessy MA, Henderson J, Zeiss CR, Kavich DE, Collins MJ, Pecis KM, Kenamore BD (1993) A clinical and immunologic study of workers with trimellitic-anhydride-induced immunologic lung disease after transfer to low exposure jobs. Am Rev Respir Dis 148(1):54–57

    CAS  PubMed  Google Scholar 

  79. 79.

    Francis JN, James LK, Paraskevopoulos G, Wong C, Calderon MA, Durham SR, Till SJ (2008) Grass pollen immunotherapy: IL-10 induction and suppression of late responses precedes IgG4 inhibitory antibody activity. J Allergy Clin Immunol 121(5):1120–1125 e2

    CAS  PubMed  Google Scholar 

  80. 80.

    Savilahti EM, Rantanen V, Lin JS, Karinen S, Saarinen KM, Goldis M, Mäkelä MJ, Hautaniemi S, Savilahti E, Sampson HA (2010) Early recovery from cow's milk allergy is associated with decreasing IgE and increasing IgG4 binding to cow's milk epitopes. J Allergy Clin Immunol 125(6):1315–1321 e9

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Geroldinger-Simic M, Zelniker T, Aberer W, Ebner C, Egger C, Greiderer A, Prem N, Lidholm J, Ballmer-Weber BK, Vieths S, Bohle B (2011) Birch pollen-related food allergy: clinical aspects and the role of allergen-specific IgE and IgG4 antibodies. J Allergy Clin Immunol 127(3):616–622 e1

    CAS  PubMed  Google Scholar 

  82. 82.

    Van der Zee, J.S. and R.C. Aalberse, The role of IgG in immediate-type hypersensitivity. Eur Respir J Suppl, 1991. 13: p. 91s–96s

  83. 83.

    Aalberse RC, Schuurman J (2002) IgG4 breaking the rules. Immunology 105(1):9–19

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Krop EJ et al (2011) IgG4 antibodies against rodents in laboratory animal workers do not protect against allergic sensitization. Allergy 66(4):517–522

    CAS  PubMed  Google Scholar 

  85. 85.

    Yokota K et al (1998) The significance of specific IgG4 antibodies to methyltetrahydrophthalic anhydride in occupationally exposed subjects. Clin Exp Allergy 28(6):694–701

    CAS  PubMed  Google Scholar 

Download references

Funding Source

Supported by the National Institute for Occupational Safety and Health Pilot Research Project Training Program of the University of Cincinnati Education and Research Center Grant #T42/0H008432-09 to D.G.

Author information



Corresponding author

Correspondence to Jonathan A. Bernstein.

Ethics declarations

Conflict of Interest

COI statement: Dr. Bernstein is a consultant to industry on matters related to work-related respiratory disease and immunosurveillance.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghosh, D., Bernstein, J.A. Health Effects of Trimellitic Anhydride Occupational Exposure: Insights from Animal Models and Immunosurveillance Programs. Clinic Rev Allerg Immunol 59, 61–77 (2020).

Download citation


  • Occupational health
  • Haptens
  • Trimellitic anhydride
  • Industrial asthma
  • IgE
  • Low molecular weight allergens