Skip to main content
Log in

The Immunologic Paradoxes of IgG4-Related Disease

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

IgG4-related disease (IgG4-RD), which usually occurs in middle-aged and elderly men, is a newly recognized fibroinflammatory condition characterized by swelling and sclerosis of involved organs, increased IgG4-positive plasma cell infiltration in lesions, and elevated IgG4 concentration in serum. Despite growing interest in the research, the pathophysiological mechanism remains elusive. Most IgG4-RD patients respond well to steroid therapy initially, but recurrent and refractory cases are common, especially in advanced fibrotic stage. Recent studies have documented the heterogeneity of the B cell lineages, which suggests their multiple functions in IgG4-RD beyond IgG4 production, such as cytokine secretion, antigen presentation, autoantibody production, and modulation of T and B cell interactions. Thus, a critical balance exists between pathogenic and regulatory B subsets to prevent immunopathology. A prompt response to B cell depletion therapy reported in recent cases strongly suggests the imbalance within B cell lineages in IgG4-RD. A more precise understanding of the pathogenesis of IgG4-RD will open up new perspectives for therapeutic strategy. With a particular emphasis on the novel B cell-targeted therapeutic strategies, this review highlights the immunologic features of IgG4-RD and the possible roles of B cell lineages in the pathogenesis of IgG4-RD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Stone JH, Zen Y, Deshpande V (2012) IgG4-related disease. N Engl J Med 366(6):539–551. https://doi.org/10.1056/NEJMra1104650

    Article  PubMed  CAS  Google Scholar 

  2. Martinez-Valle F, Fernandez-Codina A, Pinal-Fernandez I, Orozco-Galvez O, Vilardell-Tarres M (2017) IgG4-related disease: evidence from six recent cohorts. Autoimmun Rev 16(2):168–172. https://doi.org/10.1016/j.autrev.2016.12.008

    Article  PubMed  CAS  Google Scholar 

  3. Hubers LM, Maillette de Buy Wenniger LJ, Doorenspleet ME, Klarenbeek PL, Verheij J, Rauws EA, van Gulik TM, Oude Elferink RP, van de Graaf SF, de Vries N, Beuers U (2015) IgG4-associated cholangitis: a comprehensive review. Clin Rev Allergy Immunol 48(2–3):198–206. https://doi.org/10.1007/s12016-014-8430-2

    Article  PubMed  CAS  Google Scholar 

  4. Salinas GF, Braza F, Brouard S, Tak PP, Baeten D (2013) The role of B lymphocytes in the progression from autoimmunity to autoimmune disease. Clin Immunol (Orlando, Fla) 146(1):34–45. https://doi.org/10.1016/j.clim.2012.10.005

    Article  CAS  Google Scholar 

  5. Yanaba K, Bouaziz JD, Matsushita T, Magro CM, St Clair EW, Tedder TF (2008) B-lymphocyte contributions to human autoimmune disease. Immunol Rev 223:284–299. https://doi.org/10.1111/j.1600-065X.2008.00646.x

    Article  PubMed  CAS  Google Scholar 

  6. Mauri C (2010) Regulation of immunity and autoimmunity by B cells. Curr Opin Immunol 22(6):761–767. https://doi.org/10.1016/j.coi.2010.10.009

    Article  PubMed  CAS  Google Scholar 

  7. Yang M, Rui K, Wang S, Lu L (2013) Regulatory B cells in autoimmune diseases. Cell Mol Immunol 10(2):122–132. https://doi.org/10.1038/cmi.2012.60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Luu VP, Vazquez MI, Zlotnik A (2014) B cells participate in tolerance and autoimmunity through cytokine production. Autoimmunity 47(1):1–12. https://doi.org/10.3109/08916934.2013.856006

    Article  PubMed  CAS  Google Scholar 

  9. Carruthers MN, Topazian MD, Khosroshahi A, Witzig TE, Wallace ZS, Hart PA, Deshpande V, Smyrk TC, Chari S, Stone JH (2015) Rituximab for IgG4-related disease: a prospective, open-label trial. Ann Rheum Dis 74(6):1171–1177. https://doi.org/10.1136/annrheumdis-2014-206605

    Article  PubMed  CAS  Google Scholar 

  10. Uchida K, Okazaki K, Nishi T, Uose S, Nakase H, Ohana M, Matsushima Y, Omori K, Chiba T (2002) Experimental immune-mediated pancreatitis in neonatally thymectomized mice immunized with carbonic anhydrase II and lactoferrin. Lab Investig 82(4):411–424

    Article  PubMed  CAS  Google Scholar 

  11. Lin W, Jin L, Chen H, Wu Q, Fei Y, Zheng W, Wang Q, Li P, Li Y, Zhang W, Zhao Y, Zeng X, Zhang F (2014) B cell subsets and dysfunction of regulatory B cells in IgG4-related diseases and primary Sjogren’s syndrome: the similarities and differences. Arthritis Res Ther 16(3):R118. https://doi.org/10.1186/ar4571

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Mattoo H, Mahajan VS, Della-Torre E, Sekigami Y, Carruthers M, Wallace ZS, Deshpande V, Stone JH, Pillai S (2014) De novo oligoclonal expansions of circulating plasmablasts in active and relapsing IgG4-related disease. J Allergy Clin Immunol 134(3):679–687. https://doi.org/10.1016/j.jaci.2014.03.034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Sumimoto K, Uchida K, Kusuda T, Mitsuyama T, Sakaguchi Y, Fukui T, Matsushita M, Takaoka M, Nishio A, Okazaki K (2014) The role of CD19+ CD24high CD38high and CD19+ CD24high CD27+ regulatory B cells in patients with type 1 autoimmune pancreatitis. Pancreatology 14(3):193–200. https://doi.org/10.1016/j.pan.2014.02.004

    Article  PubMed  CAS  Google Scholar 

  14. Wallace ZS, Mattoo H, Carruthers M, Mahajan VS, Della Torre E, Lee H, Kulikova M, Deshpande V, Pillai S, Stone JH (2015) Plasmablasts as a biomarker for IgG4-related disease, independent of serum IgG4 concentrations. Ann Rheum Dis 74(1):190–195. https://doi.org/10.1136/annrheumdis-2014-205233

    Article  PubMed  CAS  Google Scholar 

  15. Lin W, Zhang P, Chen H, Chen Y, Yang H, Zheng W, Zhang X, Zhang F, Zhang W, Lipsky PE (2017) Circulating plasmablasts/plasma cells: a potential biomarker for IgG4-related disease. Arthritis Res Ther 19(1):25. https://doi.org/10.1186/s13075-017-1231-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Nutt SL, Hodgkin PD, Tarlinton DM, Corcoran LM (2015) The generation of antibody-secreting plasma cells. Nat Rev Immunol 15(3):160–171. https://doi.org/10.1038/nri3795

    Article  PubMed  CAS  Google Scholar 

  17. Bayles I, Milcarek C (2014) Plasma cell formation, secretion, and persistence: the short and the long of it. Crit Rev Immunol 34(6):481–499

    Article  PubMed  CAS  Google Scholar 

  18. Kawa S (2016) The Immunobiology of immunoglobulin G4 and complement activation pathways in IgG4-related disease. Curr Top Microbiol Immunol. https://doi.org/10.1007/82_2016_39

  19. van der Neut Kolfschoten M, Schuurman J, Losen M, Bleeker WK, Martinez-Martinez P, Vermeulen E, den Bleker TH, Wiegman L, Vink T, Aarden LA, De Baets MH, van de Winkel JG, Aalberse RC, Parren PW (2007) Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science 317(5844):1554–1557. https://doi.org/10.1126/science.1144603

    Article  PubMed  CAS  Google Scholar 

  20. Kawa S, Kitahara K, Hamano H, Ozaki Y, Arakura N, Yoshizawa K, Umemura T, Ota M, Mizoguchi S, Shimozuru Y, Bahram S (2008) A novel immunoglobulin-immunoglobulin interaction in autoimmunity. PLoS One 3(2):e1637. https://doi.org/10.1371/journal.pone.0001637

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Rispens T, Ooijevaar-de Heer P, Bende O, Aalberse RC (2011) Mechanism of immunoglobulin G4 Fab-arm exchange. J Am Chem Soc 133(26):10302–10311. https://doi.org/10.1021/ja203638y

    Article  PubMed  CAS  Google Scholar 

  22. Aalberse R (2011) The role of IgG antibodies in allergy and immunotherapy. Allergy 66(Suppl 95):28–30. https://doi.org/10.1111/j.1398-9995.2011.02628.x

    Article  PubMed  Google Scholar 

  23. Aoki S, Nakazawa T, Ohara H, Sano H, Nakao H, Joh T, Murase T, Eimoto T, Itoh M (2005) Immunohistochemical study of autoimmune pancreatitis using anti-IgG4 antibody and patients’ sera. Histopathology 47(2):147–158. https://doi.org/10.1111/j.1365-2559.2005.02204.x

    Article  PubMed  CAS  Google Scholar 

  24. Asada M, Nishio A, Uchida K, Kido M, Ueno S, Uza N, Kiriya K, Inoue S, Kitamura H, Ohashi S, Tamaki H, Fukui T, Matsuura M, Kawasaki K, Nishi T, Watanabe N, Nakase H, Chiba T, Okazaki K (2006) Identification of a novel autoantibody against pancreatic secretory trypsin inhibitor in patients with autoimmune pancreatitis. Pancreas 33(1):20–26. https://doi.org/10.1097/01.mpa.0000226881.48204.fd

    Article  PubMed  CAS  Google Scholar 

  25. Frulloni L, Lunardi C, Simone R, Dolcino M, Scattolini C, Falconi M, Benini L, Vantini I, Corrocher R, Puccetti A (2009) Identification of a novel antibody associated with autoimmune pancreatitis. N Engl J Med 361(22):2135–2142. https://doi.org/10.1056/NEJMoa0903068

    Article  PubMed  CAS  Google Scholar 

  26. Endo T, Takizawa S, Tanaka S, Takahashi M, Fujii H, Kamisawa T, Kobayashi T (2009) Amylase alpha-2A autoantibodies: novel marker of autoimmune pancreatitis and fulminant type 1 diabetes. Diabetes 58(3):732–737. https://doi.org/10.2337/db08-0493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Lohr JM, Faissner R, Koczan D, Bewerunge P, Bassi C, Brors B, Eils R, Frulloni L, Funk A, Halangk W, Jesenofsky R, Kaderali L, Kleeff J, Kruger B, Lerch MM, Losel R, Magnani M, Neumaier M, Nittka S, Sahin-Toth M, Sanger J, Serafini S, Schnolzer M, Thierse HJ, Wandschneider S, Zamboni G, Kloppel G (2010) Autoantibodies against the exocrine pancreas in autoimmune pancreatitis: gene and protein expression profiling and immunoassays identify pancreatic enzymes as a major target of the inflammatory process. Am J Gastroenterol 105(9):2060–2071. https://doi.org/10.1038/ajg.2010.141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Aparisi L, Farre A, Gomez-Cambronero L, Martinez J, De Las Heras G, Corts J, Navarro S, Mora J, Lopez-Hoyos M, Sabater L, Ferrandez A, Bautista D, Perez-Mateo M, Mery S, Sastre J (2005) Antibodies to carbonic anhydrase and IgG4 levels in idiopathic chronic pancreatitis: relevance for diagnosis of autoimmune pancreatitis. Gut 54(5):703–709. https://doi.org/10.1136/gut.2004.047142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Nishimori I, Miyaji E, Morimoto K, Nagao K, Kamada M, Onishi S (2005) Serum antibodies to carbonic anhydrase IV in patients with autoimmune pancreatitis. Gut 54(2):274–281. https://doi.org/10.1136/gut.2004.049064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Guarneri F, Guarneri C, Benvenga S (2005) Helicobacter pylori and autoimmune pancreatitis: role of carbonic anhydrase via molecular mimicry? J Cell Mol Med 9(3):741–744

    Article  PubMed  CAS  Google Scholar 

  31. Kountouras J, Zavos C, Chatzopoulos D (2005) Autoimmune pancreatitis, helicobacter pylori infection, and apoptosis: a proposed relationship. Pancreas 30(2):192–193

    Article  PubMed  Google Scholar 

  32. Okazaki K, Uchida K, Ohana M, Nakase H, Uose S, Inai M, Matsushima Y, Katamura K, Ohmori K, Chiba T (2000) Autoimmune-related pancreatitis is associated with autoantibodies and a Th1/Th2-type cellular immune response. Gastroenterology 118(3):573–581

    Article  PubMed  CAS  Google Scholar 

  33. Albert LJ, Inman RD (1999) Molecular mimicry and autoimmunity. N Engl J Med 341(27):2068–2074. https://doi.org/10.1056/nejm199912303412707

    Article  PubMed  CAS  Google Scholar 

  34. Fox RI, Fox CM (2015) IgG4 levels and plasmablasts as a marker for IgG4-related disease (IgG4-RD). Ann Rheum Dis 74(1):1–3. https://doi.org/10.1136/annrheumdis-2014-205476

    Article  PubMed  Google Scholar 

  35. Carruthers MN, Stone JH, Deshpande V, Khosroshahi A (2012) Development of an IgG4-RD responder index. Int J Rheumatol 2012:259408–259407. https://doi.org/10.1155/2012/259408

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mizoguchi A, Mizoguchi E, Takedatsu H, Blumberg RS, Bhan AK (2002) Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity 16(2):219–230

    Article  PubMed  CAS  Google Scholar 

  37. Iwata Y, Matsushita T, Horikawa M, Dilillo DJ, Yanaba K, Venturi GM, Szabolcs PM, Bernstein SH, Magro CM, Williams AD, Hall RP, St Clair EW, Tedder TF (2011) Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood 117(2):530–541. https://doi.org/10.1182/blood-2010-07-294249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Blair PA, Norena LY, Flores-Borja F, Rawlings DJ, Isenberg DA, Ehrenstein MR, Mauri C (2010) CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic lupus erythematosus patients. Immunity 32(1):129–140. https://doi.org/10.1016/j.immuni.2009.11.009

    Article  PubMed  CAS  Google Scholar 

  39. Ummarino D (2017) Rheumatoid arthritis: defective IL-10-producing Breg cells. Nat Rev Rheumatol 13:132. https://doi.org/10.1038/nrrheum.2017.10

    Article  PubMed  Google Scholar 

  40. Knippenberg S, Peelen E, Smolders J, Thewissen M, Menheere P, Cohen Tervaert JW, Hupperts R, Damoiseaux J (2011) Reduction in IL-10 producing B cells (Breg) in multiple sclerosis is accompanied by a reduced naive/memory Breg ratio during a relapse but not in remission. J Neuroimmunol 239(1–2):80–86. https://doi.org/10.1016/j.jneuroim.2011.08.019

    Article  PubMed  CAS  Google Scholar 

  41. Moriyama M, Nakamura S (2016) Th1/Th2 immune balance and other T helper subsets in IgG4-related disease. Curr Top Microbiol Immunol. https://doi.org/10.1007/82_2016_40

  42. Zen Y, Fujii T, Harada K, Kawano M, Yamada K, Takahira M, Nakanuma Y (2007) Th2 and regulatory immune reactions are increased in immunoglobin G4-related sclerosing pancreatitis and cholangitis. Hepatology 45(6):1538–1546. https://doi.org/10.1002/hep.21697

    Article  PubMed  CAS  Google Scholar 

  43. Tanaka A, Moriyama M, Nakashima H, Miyake K, Hayashida JN, Maehara T, Shinozaki S, Kubo Y, Nakamura S (2012) Th2 and regulatory immune reactions contribute to IgG4 production and the initiation of Mikulicz disease. Arthritis Rheum 64(1):254–263. https://doi.org/10.1002/art.33320

    Article  PubMed  CAS  Google Scholar 

  44. Maizels RM, Yazdanbakhsh M (2003) Immune regulation by helminth parasites: cellular and molecular mechanisms. Nat Rev Immunol 3(9):733–744. https://doi.org/10.1038/nri1183

    Article  PubMed  CAS  Google Scholar 

  45. Akiyama M, Suzuki K, Yamaoka K, Yasuoka H, Takeshita M, Kaneko Y, Kondo H, Kassai Y, Miyazaki T, Morita R, Yoshimura A, Takeuchi T (2015) Number of circulating follicular helper 2 T cells correlates with IgG4 and interleukin-4 levels and plasmablast numbers in IgG4-related disease. Arthritis Rheumatol 67(9):2476–2481. https://doi.org/10.1002/art.39209

    Article  PubMed  CAS  Google Scholar 

  46. Mattoo H, Mahajan VS, Maehara T, Deshpande V, Della-Torre E, Wallace ZS, Kulikova M, Drijvers JM, Daccache J, Carruthers MN, Castelino FV, Stone JR, Stone JH, Pillai S (2016) Clonal expansion of CD4(+) cytotoxic T lymphocytes in patients with IgG4-related disease. J Allergy Clin Immunol 138(3):825–838. https://doi.org/10.1016/j.jaci.2015.12.1330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Mattoo H, Stone JH, Pillai S (2017) Clonally expanded cytotoxic CD4+ T cells and the pathogenesis of IgG4-related disease. Autoimmunity 50(1):19–24. https://doi.org/10.1080/08916934.2017.1280029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Maehara T, Mattoo H, Ohta M, Mahajan VS, Moriyama M, Yamauchi M, Drijvers J, Nakamura S, Stone JH, Pillai SS (2017) Lesional CD4+ IFN-gamma+ cytotoxic T lymphocytes in IgG4-related dacryoadenitis and sialoadenitis. Ann Rheum Dis 76(2):377–385. https://doi.org/10.1136/annrheumdis-2016-209139

    Article  PubMed  CAS  Google Scholar 

  49. Yamamoto M, Takahashi H, Takano K, Shimizu Y, Sakurai N, Suzuki C, Naishiro Y, Yajima H, Awakawa T, Himi T, Nakase H (2016) Efficacy of abatacept for IgG4-related disease over 8 months. Ann Rheum Dis 75(8):1576–1578. https://doi.org/10.1136/annrheumdis-2016-209368

    Article  PubMed  Google Scholar 

  50. Hart PA, Topazian MD, Witzig TE, Clain JE, Gleeson FC, Klebig RR, Levy MJ, Pearson RK, Petersen BT, Smyrk TC, Sugumar A, Takahashi N, Vege SS, Chari ST (2013) Treatment of relapsing autoimmune pancreatitis with immunomodulators and rituximab: the Mayo Clinic experience. Gut 62(11):1607–1615. https://doi.org/10.1136/gutjnl-2012-302886

    Article  PubMed  CAS  Google Scholar 

  51. Smith MR (2003) Rituximab (monoclonal anti-CD20 antibody): mechanisms of action and resistance. Oncogene 22(47):7359–7368. https://doi.org/10.1038/sj.onc.1206939

    Article  PubMed  CAS  Google Scholar 

  52. Stone JH, Merkel PA, Spiera R, Seo P, Langford CA, Hoffman GS, Kallenberg CG, St Clair EW, Turkiewicz A, Tchao NK, Webber L, Ding L, Sejismundo LP, Mieras K, Weitzenkamp D, Ikle D, Seyfert-Margolis V, Mueller M, Brunetta P, Allen NB, Fervenza FC, Geetha D, Keogh KA, Kissin EY, Monach PA, Peikert T, Stegeman C, Ytterberg SR, Specks U (2010) Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N Engl J Med 363(3):221–232. https://doi.org/10.1056/NEJMoa0909905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Jones RB, Furuta S, Tervaert JW, Hauser T, Luqmani R, Morgan MD, Peh CA, Savage CO, Segelmark M, Tesar V, van Paassen P, Walsh M, Westman K, Jayne DR (2015) Rituximab versus cyclophosphamide in ANCA-associated renal vasculitis: 2-year results of a randomised trial. Ann Rheum Dis 74(6):1178–1182. https://doi.org/10.1136/annrheumdis-2014-206404

    Article  PubMed  CAS  Google Scholar 

  54. Plosker GL, Figgitt DP (2003) Rituximab: a review of its use in non-Hodgkin’s lymphoma and chronic lymphocytic leukaemia. Drugs 63(8):803–843

    Article  PubMed  CAS  Google Scholar 

  55. Edwards JC, Szczepanski L, Szechinski J, Filipowicz-Sosnowska A, Emery P, Close DR, Stevens RM, Shaw T (2004) Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N Engl J Med 350(25):2572–2581. https://doi.org/10.1056/NEJMoa032534

    Article  PubMed  CAS  Google Scholar 

  56. Gurcan HM, Keskin DB, Stern JN, Nitzberg MA, Shekhani H, Ahmed AR (2009) A review of the current use of rituximab in autoimmune diseases. Int Immunopharmacol 9(1):10–25. https://doi.org/10.1016/j.intimp.2008.10.004

    Article  PubMed  CAS  Google Scholar 

  57. Edwards JC, Cambridge G (2006) B-cell targeting in rheumatoid arthritis and other autoimmune diseases. Nat Rev Immunol 6(5):394–403. https://doi.org/10.1038/nri1838

    Article  PubMed  CAS  Google Scholar 

  58. Knobl P (2016) New treatment options for thrombotic thrombocytopenic purpura. Hamostaseologie 37:211–215. https://doi.org/10.5482/hamo-16-07-0026

    Article  PubMed  Google Scholar 

  59. Ran NA, Payne AS (2017) Rituximab therapy in pemphigus and other autoantibody-mediated diseases. F1000Res 6:83. https://doi.org/10.12688/f1000research.9476.1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Khosroshahi A, Carruthers MN, Deshpande V, Unizony S, Bloch DB, Stone JH (2012) Rituximab for the treatment of IgG4-related disease: lessons from 10 consecutive patients. Medicine (Baltimore) 91(1):57–66. https://doi.org/10.1097/MD.0b013e3182431ef6

    Article  CAS  Google Scholar 

  61. Maritati F, Corradi D, Versari A, Casali M, Urban ML, Buzio C, Vaglio A (2012) Rituximab therapy for chronic periaortitis. Ann Rheum Dis 71(7):1262–1264. https://doi.org/10.1136/annrheumdis-2011-201166

    Article  PubMed  CAS  Google Scholar 

  62. Topazian M, Witzig TE, Smyrk TC, Pulido JS, Levy MJ, Kamath PS, Chari ST (2008) Rituximab therapy for refractory biliary strictures in immunoglobulin G4-associated cholangitis. Clin Gastroenterol Hepatol 6(3):364–366. https://doi.org/10.1016/j.cgh.2007.12.020

    Article  PubMed  CAS  Google Scholar 

  63. Khosroshahi A, Bloch DB, Deshpande V, Stone JH (2010) Rituximab therapy leads to rapid decline of serum IgG4 levels and prompt clinical improvement in IgG4-related systemic disease. Arthritis Rheum 62(6):1755–1762. https://doi.org/10.1002/art.27435

    Article  PubMed  CAS  Google Scholar 

  64. Yamamoto M, Awakawa T, Takahashi H (2015) Is rituximab effective for IgG4-related disease in the long term? Experience of cases treated with rituximab for 4 years. Ann Rheum Dis 74(8):e46. https://doi.org/10.1136/annrheumdis-2015-207625

    Article  PubMed  CAS  Google Scholar 

  65. Della-Torre E, Feeney E, Deshpande V, Mattoo H, Mahajan V, Kulikova M, Wallace ZS, Carruthers M, Chung RT, Pillai S, Stone JH (2014) B-cell depletion attenuates serological biomarkers of fibrosis and myofibroblast activation in IgG4-related disease. Ann Rheum Dis 74:2236–2243. https://doi.org/10.1136/annrheumdis-2014-205799

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Litinskiy MB, Nardelli B, Hilbert DM, He B, Schaffer A, Casali P, Cerutti A (2002) DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat Immunol 3(9):822–829. https://doi.org/10.1038/ni829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Yamada T, Zhang K, Yamada A, Zhu D, Saxon A (2005) B lymphocyte stimulator activates p38 mitogen-activated protein kinase in human Ig class switch recombination. Am J Respir Cell Mol Biol 32(5):388–394. https://doi.org/10.1165/rcmb.2004-0317OC

    Article  PubMed  CAS  Google Scholar 

  68. Avery DT, Kalled SL, Ellyard JI, Ambrose C, Bixler SA, Thien M, Brink R, Mackay F, Hodgkin PD, Tangye SG (2003) BAFF selectively enhances the survival of plasmablasts generated from human memory B cells. J Clin Invest 112(2):286–297. https://doi.org/10.1172/jci18025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Moon SH, Kim MH (2012) The role of endoscopy in the diagnosis of autoimmune pancreatitis. Gastrointest Endosc 76(3):645–656. https://doi.org/10.1016/j.gie.2012.04.458

    Article  PubMed  Google Scholar 

  70. Manzi S, Sanchez-Guerrero J, Merrill JT, Furie R, Gladman D, Navarra SV, Ginzler EM, D'Cruz DP, Doria A, Cooper S, Zhong ZJ, Hough D, Freimuth W, Petri MA (2012) Effects of belimumab, a B lymphocyte stimulator-specific inhibitor, on disease activity across multiple organ domains in patients with systemic lupus erythematosus: combined results from two phase III trials. Ann Rheum Dis 71(11):1833–1838. https://doi.org/10.1136/annrheumdis-2011-200831

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Hahn BH (2013) Belimumab for systemic lupus erythematosus. N Engl J Med 368(16):1528–1535. https://doi.org/10.1056/NEJMct1207259

    Article  PubMed  CAS  Google Scholar 

  72. Vincent FB, Morand EF, Schneider P, Mackay F (2014) The BAFF/APRIL system in SLE pathogenesis. Nat Rev Rheumatol 10(6):365–373. https://doi.org/10.1038/nrrheum.2014.33

    Article  PubMed  CAS  Google Scholar 

  73. De Vita S, Quartuccio L, Seror R, Salvin S, Ravaud P, Fabris M, Nocturne G, Gandolfo S, Isola M, Mariette X (2015) Efficacy and safety of belimumab given for 12 months in primary Sjogren’s syndrome: the BELISS open-label phase II study. Rheumatology (Oxford):kev257. https://doi.org/10.1093/rheumatology/kev257

  74. Kiyama K, Kawabata D, Hosono Y, Kitagori K, Yukawa N, Yoshifuji H, Omura K, Fujii T, Mimori T (2012) Serum BAFF and APRIL levels in patients with IgG4-related disease and their clinical significance. Arthritis Res Ther 14(2):R86. https://doi.org/10.1186/ar3810

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Yamanishi H, Kumagi T, Yokota T, Azemoto N, Koizumi M, Kobayashi Y, Abe M, Murakami H, Hiasa Y, Matsuura B, Kawamoto H, Yamamoto K, Onji M (2011) Clinical significance of B cell-activating factor in autoimmune pancreatitis. Pancreas 40(6):840–845. https://doi.org/10.1097/MPA.0b013e3182143b10

    Article  PubMed  CAS  Google Scholar 

  76. Koneczny I, Stevens JA, De Rosa A, Huda S, Huijbers MG, Saxena A, Maestri M, Lazaridis K, Zisimopoulou P, Tzartos S, Verschuuren J, van der Maarel SM, van Damme P, De Baets MH, Molenaar PC, Vincent A, Ricciardi R, Martinez-Martinez P, Losen M (2017) IgG4 autoantibodies against muscle-specific kinase undergo fab-arm exchange in myasthenia gravis patients. J Autoimmun 77:104–115. https://doi.org/10.1016/j.jaut.2016.11.005

    Article  PubMed  CAS  Google Scholar 

  77. Iwata N, Iwama S, Sugimura Y, Yasuda Y, Nakashima K, Takeuchi S, Hagiwara D, Ito Y, Suga H, Goto M, Banno R, Caturegli P, Koike T, Oshida Y, Arima H (2016) Anti-pituitary antibodies against corticotrophs in IgG4-related hypophysitis. Pituitary 20:301–310. https://doi.org/10.1007/s11102-016-0780-8

    Article  CAS  Google Scholar 

  78. Barranco C (2016) Autoimmunity: CD4(+) CTLs drive IgG4-related disease. Nat Rev Rheumatol 12(9):500. https://doi.org/10.1038/nrrheum.2016.124

    Article  PubMed  CAS  Google Scholar 

  79. Karim F, Loeffen J, Bramer W, Westenberg L, Verdijk R, van Hagen M, van Laar J (2016) IgG4-related disease: a systematic review of this unrecognized disease in pediatrics. Pediatr Rheumatol Online J 14(1):18. https://doi.org/10.1186/s12969-016-0079-3

    Article  PubMed  PubMed Central  Google Scholar 

  80. Bianchi D (2016) IgG4-related disease: what urologists should know. Int Urol Nephrol 48(3):301–312. https://doi.org/10.1007/s11255-015-1189-4

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (81620108002 to Xiong Ma, 81500435 to Xiao Xiao) and Shanghai Yangfan Program (15YF1407100 to Xiao Xiao).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Eric Gershwin or Xiong Ma.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Xiao Xiao and Min Lian share co-first authorship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, X., Lian, M., Zhang, W. et al. The Immunologic Paradoxes of IgG4-Related Disease. Clinic Rev Allerg Immunol 54, 344–351 (2018). https://doi.org/10.1007/s12016-018-8679-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-018-8679-y

Keywords

Navigation