Skip to main content

Advertisement

Log in

Immunology of Bee Venom

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Bee venom is a blend of biochemicals ranging from small peptides and enzymes to biogenic amines. It is capable of triggering severe immunologic reactions owing to its allergenic fraction. Venom components are presented to the T cells by antigen-presenting cells within the skin. These Th2 type T cells then release IL-4 and IL-13 which subsequently direct B cells to class switch to production of IgE. Generating venom-specific IgE and crosslinking FcεR1(s) on the surface of mast cells complete the sensitizing stage in allergic individuals who are most likely to experience severe and even fatal allergic reactions after being stung. Specific IgE for bee venom is a double-edged sword as it is a powerful mediator in triggering allergic events but is also applied successfully in diagnosis of the venom allergic patient. The healing capacity of bee venom has been rediscovered under laboratory-controlled conditions using animal models and cell cultures. The potential role of enzymatic fraction of bee venom including phospholipase A2 in the initiation and development of immune responses also has been studied in numerous research settings. Undoubtedly, having insights into immunologic interactions between bee venom components and innate/specific immune cells both locally and systematically will contribute to the development of immunologic strategies in specific and epitope-based immunotherapy especially in individuals with Hymenoptera venom allergy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vetter RS, Visscher PK (1998) Bites and stings of medically important venomous arthropods. Int J Dermatol 37(7):481–496

    Article  PubMed  CAS  Google Scholar 

  2. Danforth BN et al (2006) The history of early bee diversification based on five genes plus morphology. Proc Natl Acad Sci U S A 103(41):15118–15123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Denis Michez AN, Jean-Jacques Menier, and Pierre Rasmont (2007) The oldest fossil of a melittid bee (Hymenoptera: Apiformes) from the early Eocene of Oise (France). Zoological Journal of the Linnean Society doi: 10.1111/j.1096-3642.2007.00307.x

    Article  Google Scholar 

  4. Fitzgerald KT, Flood AA (2006) Hymenoptera stings. Clin Tech Small Anim Pract 21(4):194–204

    Article  PubMed  Google Scholar 

  5. Wang Z et al (2016) Honey bees modulate their olfactory learning in the presence of hornet predators and alarm component. PLoS One 11(2):e0150399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Nitecka-Buchta, A. and P. Buchta (2014) Myorelaxant effect of bee venom topical skin application in patients with RDC/TMD Ia and RDC/TMD Ib: a randomized, double blinded study. 2014: p. 296053

  7. Bilo BM et al (2005) Diagnosis of hymenoptera venom allergy. Allergy 60(11):1339–1349

    Article  PubMed  CAS  Google Scholar 

  8. Silva J et al (2015) Pharmacological alternatives for the treatment of neurodegenerative disorders: wasp and bee venoms and their components as new neuroactive tools. Toxins (Basel) 7(8):3179–3209

    Article  CAS  Google Scholar 

  9. Kim KH et al (2013) Bee venom ameliorates compound 48/80-induced atopic dermatitis-related symptoms. Int J Clin Exp Pathol 6(12):2896–2903

    PubMed  PubMed Central  Google Scholar 

  10. Han SM, Lee GG, Park KK (2012) Acute dermal toxicity study of bee venom (Apis mellifera L.) in rats. Toxicol Res 28(2):99–102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Hoffman DR (1996) Hymenoptera venom proteins. Adv Exp Med Biol 391:169–186

    Article  PubMed  CAS  Google Scholar 

  12. Habermann E (1972) Bee and wasp venoms. Science 177(4046):314–322

    Article  PubMed  CAS  Google Scholar 

  13. Banks BE et al (1981) New methods of isolating been venom peptides. Anal Biochem 116(1):48–52

    Article  PubMed  CAS  Google Scholar 

  14. Gauldie J et al (1976) The peptide components of bee venom. Eur J Biochem 61(2):369–376

    Article  PubMed  CAS  Google Scholar 

  15. Dotimas EM et al (1987) Isolation and structure analysis of bee venom mast cell degranulating peptide. Biochim Biophys Acta 911(3):285–293

    Article  PubMed  CAS  Google Scholar 

  16. Abd-Elhakim YM et al (2014) Combined cytogenotoxic effects of bee venom and bleomycin on rat lymphocytes: an in vitro study. Biomed Res Int 2014:173903

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Chen J et al (2016) Melittin, the major pain-producing substance of bee venom. Neurosci Bull 32:265–272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Flach CR, Prendergast FG, Mendelsohn R (1996) Infrared reflection-absorption of melittin interaction with phospholipid monolayers at the air/water interface. Biophys J 70(1):539–546

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Zolfagharian H, Mohajeri M, Babaie M (2015) Honey bee venom (Apis mellifera) contains anticoagulation factors and increases the blood-clotting time. J Pharmacopuncture 18(4):7–11

    Article  PubMed  PubMed Central  Google Scholar 

  20. Petroianu G et al (2000) Phospholipase A2-induced coagulation abnormalities after bee sting. Am J Emerg Med 18(1):22–27

    Article  PubMed  CAS  Google Scholar 

  21. Banks BE et al (1979) Apamin blocks certain neurotransmitter-induced increases in potassium permeability. Nature 282(5737):415–417

    Article  PubMed  CAS  Google Scholar 

  22. Lazdunski M (1983) Apamin, a neurotoxin specific for one class of Ca2+−dependent K+ channels. Cell Calcium 4(5–6):421–428

    Article  PubMed  CAS  Google Scholar 

  23. Six DA, Dennis EA (2000) The expanding superfamily of phospholipase a(2) enzymes: classification and characterization. Biochim Biophys Acta 1488(1–2):1–19

    PubMed  CAS  Google Scholar 

  24. Park S et al (2015) Bee venom phospholipase A2 suppresses allergic airway inflammation in an ovalbumin-induced asthma model through the induction of regulatory T cells. Immun Inflamm Dis 3(4):386–397

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Urasaki T et al (2000) Induction of the activation-related antigen CD69 on human eosinophils by type IIA phospholipase A2. Inflamm Res 49(4):177–183

    Article  PubMed  CAS  Google Scholar 

  26. Moreno M, Giralt E (2015) Three valuable peptides from bee and wasp venoms for therapeutic and biotechnological use: melittin, apamin and mastoparan. Toxins (Basel) 7(4):1126–1150

    Article  CAS  Google Scholar 

  27. Ye M et al (2016) Neuroprotective effects of bee venom phospholipase A2 in the 3xTg AD mouse model of Alzheimer's disease. J Neuroinflammation 13(1):10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Choo YM et al (2010) Dual function of a bee venom serine protease: prophenoloxidase-activating factor in arthropods and fibrin(ogen)olytic enzyme in mammals. PLoS One 5(5):e10393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Markovic-Housley Z et al (2000) Crystal structure of hyaluronidase, a major allergen of bee venom. Structure 8(10):1025–1035

    Article  PubMed  CAS  Google Scholar 

  30. Gmachl M, Kreil G (1993) Bee venom hyaluronidase is homologous to a membrane protein of mammalian sperm. Proc Natl Acad Sci U S A 90(8):3569–3573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Hoffman DR (2006) Hymenoptera venom allergens. Clin Rev Allergy Immunol 30(2):109–128

    Article  PubMed  CAS  Google Scholar 

  32. Hider RC (1988) Honeybee venom: a rich source of pharmacologically active peptides. Endeavour 12(2):60–65

    Article  PubMed  CAS  Google Scholar 

  33. Sharma JN (2014) Basic and clinical aspects of bradykinin receptor antagonists. Prog Drug Res 69:1–14

    PubMed  Google Scholar 

  34. Buku A, Price JA (2001) Further studies on the structural requirements for mast cell degranulating (MCD) peptide-mediated histamine release. Peptides 22(12):1987–1991

    Article  PubMed  CAS  Google Scholar 

  35. Chen J, Lariviere WR (2010) The nociceptive and anti-nociceptive effects of bee venom injection and therapy: a double-edged sword. Prog Neurobiol 92(2):151–183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Tiffany CW, Burch RM (1989) Bradykinin stimulates tumor necrosis factor and interleukin-1 release from macrophages. FEBS Lett 247(2):189–192

    Article  PubMed  CAS  Google Scholar 

  37. Danneels EL et al (2015) Honeybee venom proteome profile of queens and winter bees as determined by a mass spectrometric approach. Toxins (Basel) 7(11):4468–4483

    Article  CAS  Google Scholar 

  38. Teoh AC, KH Ryu and EG Lee (2016) One-Step Purification of Melittin Derived from Apis mellifera Bee Venom. J Microbiol Biotechnol

  39. Ramalingam K, Snyder GH (1993) Selective disulfide formation in truncated apamin and sarafotoxin. Biochemistry 32(41):11155–11161

    Article  PubMed  CAS  Google Scholar 

  40. Buku A (1999) Mast cell degranulating (MCD) peptide: a prototypic peptide in allergy and inflammation. Peptides 20(3):415–420

    Article  PubMed  CAS  Google Scholar 

  41. Jones S, Howl J (2006) Biological applications of the receptor mimetic peptide mastoparan. Curr Protein Pept Sci 7(6):501–508

    Article  PubMed  CAS  Google Scholar 

  42. Yamamoto T et al (2014) Mastoparan peptide causes mitochondrial permeability transition not by interacting with specific membrane proteins but by interacting with the phospholipid phase. FEBS J 281(17):3933–3944

    Article  PubMed  CAS  Google Scholar 

  43. Konno K, Kazuma K, Nihei K (2016) Peptide toxins in solitary wasp venoms. Toxins (Basel) 8(4):114

    Article  CAS  Google Scholar 

  44. Konno K et al (2002) Identification of bradykinins in solitary wasp venoms. Toxicon 40(3):309–312

    Article  PubMed  CAS  Google Scholar 

  45. Heo Y et al (2015) Evaluation of phototoxic and skin sensitization potentials of PLA 2-free bee venom. Evid Based Complement Alternat Med 2015:157367

    Article  PubMed  PubMed Central  Google Scholar 

  46. Baek YH et al (2006) Antinociceptive effect and the mechanism of bee venom acupuncture (Apipuncture) on inflammatory pain in the rat model of collagen-induced arthritis: mediation by alpha2-adrenoceptors. Brain Res 1073-1074:305–310

    Article  PubMed  CAS  Google Scholar 

  47. Yang EJ et al (2010) Bee venom attenuates neuroinflammatory events and extends survival in amyotrophic lateral sclerosis models. J Neuroinflammation 7:69

    Article  PubMed  PubMed Central  Google Scholar 

  48. Baghian A et al (1997) An amphipathic alpha-helical synthetic peptide analogue of melittin inhibits herpes simplex virus-1 (HSV-1)-induced cell fusion and virus spread. Peptides 18(2):177–183

    Article  PubMed  CAS  Google Scholar 

  49. Wade D et al (1992) Antibacterial peptides designed as analogs or hybrids of cecropins and melittin. Int J Pept Protein Res 40(5):429–436

    Article  PubMed  CAS  Google Scholar 

  50. Tragust, D.B.a.S. (2015) Venom as a component of external immune defense in Hymenoptera. Springer Science+Business Media Dordrecht

  51. Wachinger M et al (1998) Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression. J Gen Virol 79(Pt 4):731–740

    Article  PubMed  CAS  Google Scholar 

  52. Liu X et al (2002) Effect of honey bee venom on proliferation of K1735M2 mouse melanoma cells in-vitro and growth of murine B16 melanomas in-vivo. J Pharm Pharmacol 54(8):1083–1089

    Article  PubMed  CAS  Google Scholar 

  53. Matysiak J et al (2011) Characterization of honeybee venom by MALDI-TOF and nanoESI-QqTOF mass spectrometry. J Pharm Biomed Anal 54(2):273–278

    Article  PubMed  CAS  Google Scholar 

  54. Peiren N et al (2005) The protein composition of honeybee venom reconsidered by a proteomic approach. Biochim Biophys Acta 1752(1):1–5

    Article  PubMed  CAS  Google Scholar 

  55. Blank S et al (2013) Vitellogenins are new high molecular weight components and allergens (Api m 12 and Ves v 6) of Apis mellifera and Vespula Vulgaris venom. PLoS One 8(4):e62009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Blank S et al (2010) Identification, recombinant expression, and characterization of the 100 kDa high molecular weight hymenoptera venom allergens Api m 5 and Ves v 3. J Immunol 184(9):5403–5413

    Article  PubMed  CAS  Google Scholar 

  57. Spillner E, Blank S, Jakob T (2014) Hymenoptera allergens: from venom to "venome". Front Immunol 5:77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Ollert M, Blank S (2015) Anaphylaxis to insect venom allergens: role of molecular diagnostics. Curr Allergy Asthma Rep 15(5):26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Seismann H et al (2010) Dissecting cross-reactivity in hymenoptera venom allergy by circumvention of alpha-1,3-core fucosylation. Mol Immunol 47(4):799–808

    Article  PubMed  CAS  Google Scholar 

  60. de Graaf DC et al (2009) Bee, wasp and ant venomics pave the way for a component-resolved diagnosis of sting allergy. J Proteome 72(2):145–154

    Article  CAS  Google Scholar 

  61. Muller UR (1993) Epidemiology of insect sting allergy. Monogr Allergy 31:131–146

    PubMed  CAS  Google Scholar 

  62. Shin YS et al (2012) Clinical features and the diagnostic value of component allergen-specific IgE in hymenoptera venom allergy. Allergy Asthma Immunol Res 4(5):284–289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Ludman SW, Boyle RJ (2015) Stinging insect allergy: current perspectives on venom immunotherapy. J Asthma Allergy 8:75–86

    PubMed  PubMed Central  CAS  Google Scholar 

  64. Savi E et al (2016) Comparing the ability of molecular diagnosis and CAP-inhibition in identifying the really causative venom in patients with positive tests to Vespula and Polistes species. Clin Mol Allergy 14:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Selb J et al (2016) Improved recombinant Api m 1- and Ves v 5-based IgE testing to dissect bee and yellow jacket allergy and their correlation with the severity of the sting reaction. Clin Exp Allergy 46(4):621–630

    Article  PubMed  CAS  Google Scholar 

  66. Rueff F, Placzek M, Przybilla B (2006) Mastocytosis and Hymenoptera venom allergy. Curr Opin Allergy Clin Immunol 6(4):284–288

    Article  PubMed  Google Scholar 

  67. Carter MC, Metcalfe DD, Komarow HD (2014) Mastocytosis. Immunol Allergy Clin N Am 34(1):181–196

    Article  Google Scholar 

  68. Bonadonna P et al (2016) Hymenoptera allergy and mast cell activation syndromes. Curr Allergy Asthma Rep 16(1):5

    Article  PubMed  CAS  Google Scholar 

  69. Rueff F, Dugas-Breit S, Przybilla B (2009) Stinging hymenoptera and mastocytosis. Curr Opin Allergy Clin Immunol 9(4):338–342

    Article  PubMed  Google Scholar 

  70. Niedoszytko M et al (2009) Mastocytosis and insect venom allergy: diagnosis, safety and efficacy of venom immunotherapy. Allergy 64(9):1237–1245

    Article  PubMed  CAS  Google Scholar 

  71. Ozdemir C et al (2011) Mechanisms of immunotherapy to wasp and bee venom. Clin Exp Allergy 41(9):1226–1234

    Article  PubMed  CAS  Google Scholar 

  72. Mirshafiey A (2007) Venom therapy in multiple sclerosis. Neuropharmacology 53(3):353–361

    Article  PubMed  CAS  Google Scholar 

  73. Karimi A et al (2012) Effect of honey bee venom on Lewis rats with experimental allergic encephalomyelitis, a model for multiple sclerosis. Iran J Pharm Res 11(2):671–678

    PubMed  PubMed Central  Google Scholar 

  74. Hamedani M et al (2005) Bee venom, immunostimulant or immunosuppressor? Insight into the effect on matrix metalloproteinases and interferons. Immunopharmacol Immunotoxicol 27(4):671–681

    Article  PubMed  CAS  Google Scholar 

  75. Sur B et al (2016) Bee venom acupuncture alleviates trimellitic anhydride-induced atopic dermatitis-like skin lesions in mice. BMC Complement Altern Med 16(1):38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Subramaniam S et al (2016) Elevated and cross-responsive CD1a-reactive T cells in bee and wasp venom allergic individuals. Eur J Immunol 46(1):242–252

    Article  PubMed  CAS  Google Scholar 

  77. Dhami S et al (2015) Allergen immunotherapy for insect venom allergy: protocol for a systematic review. Clin Transl Allergy 6:6

    Article  PubMed  CAS  Google Scholar 

  78. Maggi E (2010) T-cell responses induced by allergen-specific immunotherapy. Clin Exp Immunol 161(1):10–18

    PubMed  PubMed Central  CAS  Google Scholar 

  79. Goldberg A, Yogev A, Confino-Cohen R (2011) Three days rush venom immunotherapy in bee allergy: safe, inexpensive and instantaneously effective. Int Arch Allergy Immunol 156(1):90–98

    Article  PubMed  CAS  Google Scholar 

  80. Sturm G et al (2002) Rush hymenoptera venom immunotherapy: a safe and practical protocol for high-risk patients. J Allergy Clin Immunol 110(6):928–933

    Article  PubMed  Google Scholar 

  81. Calabria CW (2013) Accelerated immunotherapy schedules. Curr Allergy Asthma Rep 13(4):389–398

    Article  PubMed  Google Scholar 

  82. Goldberg A, Confino-Cohen R (2010) Bee venom immunotherapy—how early is it effective? Allergy 65(3):391–395

    Article  PubMed  CAS  Google Scholar 

  83. Akdis CA, Blaser K (2000) Mechanisms of allergen-specific immunotherapy. Allergy 55(6):522–530

    Article  PubMed  CAS  Google Scholar 

  84. Akdis CA et al (1998) Role of interleukin 10 in specific immunotherapy. J Clin Invest 102(1):98–106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Sicherer SH, Leung DY (2012) Advances in allergic skin disease, anaphylaxis, and hypersensitivity reactions to foods, drugs, and insects in 2011. J Allergy Clin Immunol 129(1):76–85

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the professional revising of Dr. Todd Rambasek and Dr. Anton Pieter Bussink.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo D. Zwiener.

Ethics declarations

I hereby state that none of the coauthors and the corresponding author of this paper have conflict of interest, and it has been prepared for publication without using any fund. Moreover, the paper does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

Daniel Elieh Ali Komi, Farzaneh Shafaghat, and Ricardo D. Zwiener declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elieh Ali Komi, D., Shafaghat, F. & Zwiener, R.D. Immunology of Bee Venom. Clinic Rev Allerg Immunol 54, 386–396 (2018). https://doi.org/10.1007/s12016-017-8597-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-017-8597-4

Keywords

Navigation