Skip to main content
Log in

mTOR Signaling as a Regulator of Hematopoietic Stem Cell Fate

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Blood is generated throughout life by continued proliferation and differentiation of hematopoietic progenitors, while at the top of the hierarchy, hematopoietic stem cells (HSCs) remain largely quiescent. This way HSCs avoid senescence and preserve their capacity to repopulate the hematopoietic system. But HSCs are not always quiescent, proliferating extensively in conditions such as those found in the fetal liver. Understanding the elusive mechanisms that regulate HSC fate would enable us to comprehend a crucial piece of HSC biology and pave the way for ex-vivo HSC expansion with clear clinical benefit. Here we review how metabolism, endoplasmic reticulum stress and oxidative stress condition impact HSCs decision to self-renew or differentiate and how these signals integrate into the mammalian target of rapamycin (mTOR) pathway. We argue that the bone marrow microenvironment continuously favors differentiation through the activation of the mTOR complex (mTORC)1 signaling, while the fetal liver microenvironment favors self-renewal through the inverse mechanism. In addition, we also postulate that strategies that have successfully achieved HSC expansion, directly or indirectly, lead to the inactivation of mTORC1. Finally, we propose a mechanism by which mTOR signaling, during cell division, conditions HSC fate. This mechanism has already been demonstrated in mature hematopoietic cells (T-cells), that face a similar decision after activation, either undergoing clonal expansion or differentiation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Medvinsky, A., et al. (1996). Definitive hematopoiesis is autonomously initiated by the AGM region. Cell, 86(6), 897–906.

    Article  CAS  PubMed  Google Scholar 

  2. Ema, H., et al. (2000). Expansion of hematopoietic stem cells in the developing liver of a mouse embryo. Blood, 95(7), 2284–2288.

    Article  CAS  PubMed  Google Scholar 

  3. Ueda, T., et al. (2019). Endothelial Cell-Selective Adhesion Molecule Contributes to the Development of Definitive Hematopoiesis in the Fetal Liver. Stem Cell Reports, 13(6), 992–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Khan, J. A., et al. (2016). Fetal liver hematopoietic stem cell niches associate with portal vessels. Science, 351(6269), 176–180.

    Article  CAS  PubMed  Google Scholar 

  5. Chou, S., et al. (2013) Fetal hepatic progenitors support long-term expansion of hematopoietic stem cells. Experimental Hematology, 41(5), 479–490 e4.

  6. Wolber, F. M., et al. (2002). Roles of spleen and liver in development of the murine hematopoietic system. Experimental Hematology, 30(9), 1010–1019.

    Article  CAS  PubMed  Google Scholar 

  7. Christensen, J. L., et al. (2004). Circulation and chemotaxis of fetal hematopoietic stem cells. PLoS Biology, 2(3), E75.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Birbrair, A., et al. (2016). Niche heterogeneity in the bone marrow. Annals of the New York Academy of Sciences, 1370(1), 82–96.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ditadi, A., et al. (2017). A view of human haematopoietic development from the Petri dish. Nature Reviews. Molecular Cell Biology, 18(1), 56–67.

    Article  CAS  PubMed  Google Scholar 

  10. Pinho, S., et al. (2019). Haematopoietic stem cell activity and interactions with the niche. Nature Reviews. Molecular Cell Biology, 20(5), 303–320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rosental, B., et al. (2018). Complex mammalian-like haematopoietic system found in a colonial chordate. Nature, 564(7736), 425–429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bowie, M. B., et al. (2006). Hematopoietic stem cells proliferate until after birth and show a reversible phase-specific engraftment defect. The Journal of Clinical Investigation, 116(10), 2808–2816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wilson, A., et al. (2008). Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell, 135(6), 1118–1129.

    Article  CAS  PubMed  Google Scholar 

  14. Jiang, L., et al. (2018). SHP-1 regulates hematopoietic stem cell quiescence by coordinating TGF-beta signaling. The Journal of Experimental Medicine, 215(5), 1337–1347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hirata, Y., et al. (2018). CD150(high) bone marrow tregs maintain hematopoietic stem cell quiescence and immune privilege via adenosine. Cell Stem Cell, 22(3), 445-453 e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fleischman, R. A., et al. (1984). Development of adult bone marrow stem cells in H-2-compatible and -incompatible mouse fetuses. The Journal of Experimental Medicine, 159(3), 731–745.

    Article  CAS  PubMed  Google Scholar 

  17. Papa, L., et al. (2020). Ex vivo HSC expansion challenges the paradigm of unidirectional human hematopoiesis. Annals of the New York Academy of Sciences, 1466(1), 39–50.

    Article  PubMed  Google Scholar 

  18. Wilkinson, A. C., et al. (2020). Long-term ex vivo expansion of mouse hematopoietic stem cells. Nature Protocols, 15(2), 628–648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Papadopoli, D., Boulay, K., Kazak, L., Pollak, M., Mallette, F., Topisirovic, I., et al. (2019). mTOR as a central regulator of lifespan and aging, F1000Res, 8. https://doi.org/10.12688/f1000research.17196.1.

  20. Ersahin, T., et al. (2015). The PI3K/AKT/mTOR interactive pathway. Molecular BioSystems, 11(7), 1946–1954.

    Article  CAS  PubMed  Google Scholar 

  21. Jhanwar-Uniyal, M., et al. (2019). Diverse signaling mechanisms of mTOR complexes: mTORC1 and mTORC2 in forming a formidable relationship. Advances in Biological Regulation, 72, 51–62.

    Article  CAS  PubMed  Google Scholar 

  22. Ben-Sahra, I., et al. (2017). mTORC1 signaling and the metabolic control of cell growth. Current Opinion in Cell Biology, 45, 72–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Su, K. H., & Dai, C. (2017). mTORC1 senses stresses: Coupling stress to proteostasis, Bioessays, 39(5). https://doi.org/10.12688/f1000research.17196.1.

  24. Rajesh, K., et al. (2015). Phosphorylation of the translation initiation factor eIF2alpha at serine 51 determines the cell fate decisions of Akt in response to oxidative stress. Cell Death & Disease, 6, e1591.

    Article  CAS  Google Scholar 

  25. Morita, M., et al. (2015). mTOR coordinates protein synthesis, mitochondrial activity and proliferation. Cell Cycle, 14(4), 473–480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dunlop, E. A., et al. (2014). mTOR and autophagy: a dynamic relationship governed by nutrients and energy. Seminars in Cell & Developmental Biology, 36, 121–129.

    Article  CAS  Google Scholar 

  27. Lee, G., et al. (2017). Post-transcriptional Regulation of De Novo Lipogenesis by mTORC1-S6K1-SRPK2 Signaling. Cell, 171(7), 1545–1558 e18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ben-Sahra, I., et al. (2016). mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle. Science, 351(6274), 728–733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Khan, N. A., et al. (2017). mTORC1 regulates mitochondrial integrated stress response and mitochondrial myopathy progression. Cell Metabolism, 26(2), 419–428.

    Article  CAS  PubMed  Google Scholar 

  30. Xu, W., et al. (2019). CD146 regulates growth factor-induced mTORC2 activity independent of the PI3K and mTORC1 pathways. Cell Reports, 29(5), 1311-1322 e5.

    Article  CAS  PubMed  Google Scholar 

  31. Ebner, M., et al. (2017). Localization of mTORC2 activity inside cells. The Journal of Cell Biology, 216(2), 343–353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sen, B., et al. (2014). mTORC2 regulates mechanically induced cytoskeletal reorganization and lineage selection in marrow-derived mesenchymal stem cells. Journal of Bone and Mineral Research, 29(1), 78–89.

    Article  CAS  PubMed  Google Scholar 

  33. Devreotes, P., et al. (2015). Signaling networks that regulate cell migration. Cold Spring Harbor Perspectives in Biology, 7(8), a005959.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lee, S. E., et al. (2012). mTOR is required for asymmetric division through small GTPases in mouse oocytes. Molecular Reproduction & Development, 79(5), 356–366.

    Article  CAS  Google Scholar 

  35. Zou, Z., et al. (2015). mTORC2 promotes cell survival through c-Myc-dependent up-regulation of E2F1. The Journal of Cell Biology, 211(1), 105–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Martinez Calejman, C., et al. (2020). mTORC2-AKT signaling to ATP-citrate lyase drives brown adipogenesis and de novo lipogenesis. Nature Communications, 11(1), 575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dan, H. C., et al. (2016). PI3K/Akt promotes feedforward mTORC2 activation through IKKalpha. Oncotarget, 7(16), 21064–21075.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Vadysirisack, D. D., et al. (2012). mTOR activity under hypoxia. Methods in Molecular Biology, 821, 45–58.

    Article  CAS  PubMed  Google Scholar 

  39. Wolff, N. C., et al. (2011). Cell-type-dependent regulation of mTORC1 by REDD1 and the tumor suppressors TSC1/TSC2 and LKB1 in response to hypoxia. Molecular and Cellular Biology, 31(9), 1870–1884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cam, H., et al. (2010). mTORC1 signaling under hypoxic conditions is controlled by ATM-dependent phosphorylation of HIF-1alpha. Molecular Cell, 40(4), 509–520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yan, T., et al. (2017). Hypoxia regulates mTORC1-mediated keratinocyte motility and migration via the AMPK pathway. PLoS One, 12(1), e0169155.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Zhang, J., et al. (2019). Involvement of autophagy in hypoxia-BNIP3 signaling to promote epidermal keratinocyte migration. Cell Death & Disease, 10(3), 234.

    Article  CAS  Google Scholar 

  43. Cam, H., et al. (2011). Regulation of mammalian target of rapamycin complex 1 (mTORC1) by hypoxia: causes and consequences. Targeted Oncology, 6(2), 95–102.

    Article  PubMed  Google Scholar 

  44. Land, S. C., et al. (2007). Hypoxia-inducible factor 1alpha is regulated by the mammalian target of rapamycin (mTOR) via an mTOR signaling motif. The Journal of Biological Chemistry, 282(28), 20534–20543.

    Article  CAS  PubMed  Google Scholar 

  45. Kunisaki, Y., et al. (2013). Arteriolar niches maintain haematopoietic stem cell quiescence. Nature, 502(7473), 637–643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yamazaki, S., et al. (2011). Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell, 147(5), 1146–1158.

    Article  CAS  PubMed  Google Scholar 

  47. Bruns, I., et al. (2014). Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nature Medicine, 20(11), 1315–1320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tesio, M., et al. (2015). Hematopoietic stem cell quiescence and function are controlled by the CYLD-TRAF2-p38MAPK pathway. The Journal of Experimental Medicine, 212(4), 525–538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nakagawa, M. M., et al. (2018). Constitutive activation of NF-kappaB pathway in hematopoietic stem cells causes loss of quiescence and deregulated transcription factor networks. Frontiers in Cell and Development Biology, 6, 143.

    Article  Google Scholar 

  50. Liang, R., Arif, T., Kalmykova, S., Kasianov, A., Lin, M., Menon, V., et al. (2020). Restraining lysosomal activity preserves hematopoietic stem cell quiescence and potency. Cell Stem Cell, 26(3), 359–376.e7. https://doi.org/10.1016/j.stem.2020.01.013.

  51. Zhang, J., et al. (2012). Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell, 11(5), 589–595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pei, W., et al. (2017). Polylox barcoding reveals haematopoietic stem cell fates realized in vivo. Nature, 548(7668), 456–460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Guo, G., et al. (2013). Mapping cellular hierarchy by single-cell analysis of the cell surface repertoire. Cell Stem Cell, 13(4), 492–505.

    Article  CAS  PubMed  Google Scholar 

  54. Wu, M., et al. (2007). Imaging hematopoietic precursor division in real time. Cell Stem Cell, 1(5), 541–554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Morrison, S. J., et al. (1997). Identification of a lineage of multipotent hematopoietic progenitors. Development, 124(10), 1929–1939.

    Article  CAS  PubMed  Google Scholar 

  56. Karamitros, D., et al. (2018). Single-cell analysis reveals the continuum of human lympho-myeloid progenitor cells. Nat Immunol, 19(1), 85–97.

    Article  CAS  PubMed  Google Scholar 

  57. van Galen, P., et al. (2014). Reduced lymphoid lineage priming promotes human hematopoietic stem cell expansion. Cell Stem Cell, 14(1), 94–106.

    Article  PubMed  CAS  Google Scholar 

  58. Cheng, Y., et al. (2019). m(6)A RNA methylation maintains hematopoietic stem cell identity and symmetric commitment. Cell Reports, 28(7), 1703-1716 e6.

    Article  CAS  PubMed  Google Scholar 

  59. Till, J. E., et al. (1961). A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiation Research, 14, 213–222.

    Article  CAS  PubMed  Google Scholar 

  60. Busch, K., et al. (2015). Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature, 518(7540), 542–546.

    Article  CAS  PubMed  Google Scholar 

  61. Sun, J., et al. (2014). Clonal dynamics of native haematopoiesis. Nature, 514(7522), 322–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sawai, C. M., et al. (2016). Hematopoietic stem cells are the major source of multilineage hematopoiesis in adult animals. Immunity, 45(3), 597–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rodriguez-Fraticelli, A. E., et al. (2018). Clonal analysis of lineage fate in native haematopoiesis. Nature, 553(7687), 212–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pellin, D., et al. (2019). A comprehensive single cell transcriptional landscape of human hematopoietic progenitors. Nature Communications, 10(1), 2395.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Carrelha, J., et al. (2018). Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells. Nature, 554(7690), 106–111.

    Article  CAS  PubMed  Google Scholar 

  66. Baumgartner, C., et al. (2018). An ERK-dependent feedback mechanism prevents hematopoietic stem cell exhaustion. Cell Stem Cell, 22(6), 879-892 e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Regateiro, F. S., et al. (2013). CD73 and adenosine generation in the creation of regulatory microenvironments. Clinical and Experimental Immunology, 171(1), 1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tusi, B. K., et al. (2018). Population snapshots predict early haematopoietic and erythroid hierarchies. Nature, 555(7694), 54–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hoshii, T., et al. (2014). Pleiotropic roles of mTOR complexes in haemato-lymphopoiesis and leukemogenesis. Journal of Biochemistry, 156(2), 73–83.

    Article  CAS  PubMed  Google Scholar 

  70. Kalaitzidis, D., et al. (2012). mTOR complex 1 plays critical roles in hematopoiesis and Pten-loss-evoked leukemogenesis. Cell Stem Cell, 11(3), 429–439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hammerman, P. S., et al. (2005). Pim and Akt oncogenes are independent regulators of hematopoietic cell growth and survival. Blood, 105(11), 4477–4483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Spevak, C. C., et al. (2020). Hematopoietic stem and progenitor cells exhibit stage-specific translational programs via mTOR- and CDK1-dependent mechanisms. Cell Stem Cell, 26(5), 755-765 e7.

    Article  CAS  PubMed  Google Scholar 

  73. Magee, J. A., et al. (2012). Temporal changes in PTEN and mTORC2 regulation of hematopoietic stem cell self-renewal and leukemia suppression. Cell Stem Cell, 11(3), 415–428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Notario, L., et al. (2018). Anti-CD69 therapy induces rapid mobilization and high proliferation of HSPCs through S1P and mTOR. Leukemia, 32(6), 1445–1457.

    Article  CAS  PubMed  Google Scholar 

  75. Tan, D. Q., et al. (2019). PRMT5 modulates splicing for genome integrity and preserves proteostasis of hematopoietic stem cells. Cell Reports, 26(9), 2316-2328 e6.

    Article  CAS  PubMed  Google Scholar 

  76. Wang, X., et al. (2019). Rheb1 loss leads to increased hematopoietic stem cell proliferation and myeloid-biased differentiation in vivo. Haematologica, 104(2), 245–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Peng, H., et al. (2018). Distinct roles of Rheb and Raptor in activating mTOR complex 1 for the self-renewal of hematopoietic stem cells. Biochemical and Biophysical Research Communications, 495(1), 1129–1135.

    Article  CAS  PubMed  Google Scholar 

  78. Buechler, M. B., et al. (2016). Cutting edge: direct sensing of TLR7 ligands and type I IFN by the common myeloid progenitor promotes mTOR/PI3K-dependent emergency myelopoiesis. Journal of Immunology, 197(7), 2577–2582.

    Article  CAS  Google Scholar 

  79. Buechler, M. B., et al. (2013). Cutting edge: Type I IFN drives emergency myelopoiesis and peripheral myeloid expansion during chronic TLR7 signaling. Journal of Immunology, 190(3), 886–891.

    Article  CAS  Google Scholar 

  80. Smieszek, A., Marcinkowska, K., Pielok, A., Sikora, M., Valihrach, L., & Marycz, K. (2020). The role of miR-21 in osteoblasts-osteoclasts coupling in vitro. Cells, 9(2), 479. https://doi.org/10.3390/cells9020479.

  81. Chen, X., et al. (2013). microRNAs are ligands of Toll-like receptors. RNA, 19(6), 737–739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang, W. L., et al. (2019). Role of rictor in hematopoietic stem cells during fetal liver hematopoiesis. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 27(2), 600–605.

    PubMed  Google Scholar 

  83. Chen, C., et al. (2008). TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. The Journal of Experimental Medicine, 205(10), 2397–2408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Weichhart, T. (2018). mTOR as regulator of lifespan, aging, and cellular senescence: a mini-review. Gerontology, 64(2), 127–134.

    Article  CAS  PubMed  Google Scholar 

  85. Wilkinson, J. E., et al. (2012). Rapamycin slows aging in mice. Aging Cell, 11(4), 675–682.

    Article  CAS  PubMed  Google Scholar 

  86. Lopez-Otin, C., et al. (2013). The hallmarks of aging. Cell, 153(6), 1194–1217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. de Haan, G., et al. (2018). Aging of hematopoietic stem cells. Blood, 131(5), 479–487.

    Article  PubMed  CAS  Google Scholar 

  88. Chen, C., et al. (2009). mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Science Signaling, 2, ra75.

    PubMed  PubMed Central  Google Scholar 

  89. Chen, Y. H., et al. (2018). Asymmetric PI3K activity in lymphocytes organized by a PI3K-mediated polarity pathway. Cell Reports, 22(4), 860–868.

    Article  CAS  PubMed  Google Scholar 

  90. Sharif, O., et al. (2019) Macrophage rewiring by nutrient associated PI3K dependent pathways. Frontiers in Immunology, 10, 2002.

  91. Wu, X. L., et al. (2018). Effects of Glut1 gene silencing on proliferation, differentiation, and apoptosis of colorectal cancer cells by targeting the TGF-beta/PI3K-AKT-mTOR signaling pathway. Journal of Cellular Biochemistry, 119(2), 2356–2367.

    Article  CAS  PubMed  Google Scholar 

  92. Buller, C. L., et al. (2008). A GSK-3/TSC2/mTOR pathway regulates glucose uptake and GLUT1 glucose transporter expression. American Journal of Physiology. Cell Physiology, 295(3), C836–C843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Oburoglu, L., et al. (2014) Glucose and glutamine metabolism regulate human hematopoietic stem cell lineage specification. Cell Stem Cell, 15(2), 169 – 84.

  94. Sarrazy, V., et al. (2016). Disruption of Glut1 in hematopoietic stem cells prevents myelopoiesis and enhanced glucose flux in atheromatous plaques of ApoE(-/-) mice. Circulation Research, 118(7), 1062–1077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Meugnier, E., et al. (2007). Regulation of gene expression by glucose. Current Opinion in Clinical Nutrition and Metabolic Care, 10(4), 518–522.

    Article  CAS  PubMed  Google Scholar 

  96. Albert, B., et al. (2019). Sfp1 regulates transcriptional networks driving cell growth and division through multiple promoter-binding modes. Genes & Development, 33(5–6), 288–293.

    Article  CAS  Google Scholar 

  97. Bond, M. R., et al. (2015). A little sugar goes a long way: the cell biology of O-GlcNAc. The Journal of Cell Biology, 208(7), 869–880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Saki, N., et al. (2013). Adverse effect of high glucose concentration on stem cell therapy. International Journal of Hematology-Oncology and Stem Cell Research, 7(3), 34–40.

    PubMed  PubMed Central  Google Scholar 

  99. Freund, P., et al. (2017). O-GlcNAcylation of STAT5 controls tyrosine phosphorylation and oncogenic transcription in STAT5-dependent malignancies. Leukemia, 31(10), 2132–2142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rauth, M., Freund, P., Orlova, A., Grünert, S., Tasic, N., Han, X., et al. (2019). Cell metabolism control through O-GlcNAcylation of STAT5: A full or empty fuel tank makes a big difference for cancer cell growth and survival. International Journal of Molecular Sciences, 20(5), 1028. https://doi.org/10.3390/ijms20051028.

  101. Dey-Guha, I., et al. (2011). Asymmetric cancer cell division regulated by AKT. Proceedings of the National Academy of Sciences of the United States of America, 108(31), 12845–12850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Murray, E. R., et al. (2017). Towards specific inhibition of mTORC2. Aging (Albany NY), 9(12), 2461–2462.

    Article  Google Scholar 

  103. Yu, J. S., et al. (2016). Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development, 143(17), 3050–3060.

    Article  CAS  PubMed  Google Scholar 

  104. Murakami, M., et al. (2004). mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Molecular and Cellular Biology, 24(15), 6710–6718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Shiota, C., et al. (2006). Multiallelic disruption of the rictor gene in mice reveals that mTOR complex 2 is essential for fetal growth and viability. Developmental Cell, 11(4), 583–589.

    Article  CAS  PubMed  Google Scholar 

  106. Xu, K., et al. (2014). mTOR signaling in tumorigenesis. Biochimica et Biophysica Acta, 1846(2), 638–654.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Murugan, A. K., et al. (2013). Mutations in critical domains confer the human mTOR gene strong tumorigenicity. The Journal of Biological Chemistry, 288(9), 6511–6521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Nazareth, E. J. P., et al. (2016). A multi-lineage screen reveals mTORC1 inhibition enhances human pluripotent stem cell mesendoderm and blood progenitor production. Stem Cell Reports, 6(5), 679–691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mohammad, K., Dakik, P., Medkour, Y., Mitrofanova, D., & Titorenko, V. I. (2019). Quiescence entry, maintenance, and exit in adult stem cells. International Journal of Molecular Sciences, 20(9), 2158. https://doi.org/10.3390/ijms20092158.

  110. LiCausi, F., & Hartman, N. W. (2018). Role of mTOR complexes in neurogenesis. International Journal of Molecular Sciences, 19(5), 1544. https://doi.org/10.3390/ijms19051544.

  111. Castilho, R. M., et al. (2009). mTOR mediates Wnt-induced epidermal stem cell exhaustion and aging. Cell Stem Cell, 5(3), 279–289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Deng, Z., et al. (2015). mTOR signaling promotes stem cell activation via counterbalancing BMP-mediated suppression during hair regeneration. Journal of Molecular Cell Biology, 7(1), 62–72.

    Article  CAS  PubMed  Google Scholar 

  113. Rion, N., Castets, P., Lin, S., Enderle, L., Reinhard, J. R., Eickhorst, C., et al. (2019). mTOR controls embryonic and adult myogenesis via mTORC1. Development, 146(7). https://doi.org/10.1242/dev.172460.

  114. Moreira, B. P., Oliveira, P. F., & Alves, M. G. (2019). Molecular mechanisms controlled by mTOR in male reproductive system. International Journal of Molecular Sciences, 20(7), 1633. https://doi.org/10.3390/ijms20071633.

  115. Kaur, H., et al. (2019). Role of mTORC1 in intestinal epithelial repair and tumorigenesis. Cellular and Molecular Life Sciences, 76(13), 2525–2546.

    Article  CAS  PubMed  Google Scholar 

  116. Yousefi, M., et al. (2018). Calorie restriction governs intestinal epithelial regeneration through cell-autonomous regulation of mTORC1 in reserve stem cells. Stem Cell Reports, 10(3), 703–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Castilho, R. M., Squarize, C. H., & Gutkind, J. S. (2013). Exploiting PI3K/mTOR signaling to accelerate epithelial wound healing. Oral Diseases, 19(6), 551–558. https://doi.org/10.1111/odi.12070.

  118. Liu, L., et al. (2017). Exosomes derived from mesenchymal stem cells rescue myocardial ischaemia/reperfusion injury by inducing cardiomyocyte autophagy via AMPK and Akt pathways. Cellular Physiology and Biochemistry, 43(1), 52–68.

    Article  CAS  PubMed  Google Scholar 

  119. Hartman, N. W., et al. (2013). mTORC1 targets the translational repressor 4E-BP2, but not S6 kinase 1/2, to regulate neural stem cell self-renewal in vivo. Cell Reports, 5(2), 433–444.

    Article  CAS  PubMed  Google Scholar 

  120. Tan, V. P., et al. (2016). Nutrient-sensing mTORC1: Integration of metabolic and autophagic signals. Journal of Molecular and Cellular Cardiology, 95, 31–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kim, J., et al. (2019). mTOR as a central hub of nutrient signalling and cell growth. Nature Cell Biology, 21(1), 63–71.

    Article  CAS  PubMed  Google Scholar 

  122. Manesia, J. K., et al. (2015). Highly proliferative primitive fetal liver hematopoietic stem cells are fueled by oxidative metabolic pathways. Stem Cell Research, 15(3), 715–721.

    Article  CAS  PubMed  Google Scholar 

  123. Takubo, K., et al. (2013). Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell, 12(1), 49–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Guo, B., et al. (2018). Antagonism of PPAR-gamma signaling expands human hematopoietic stem and progenitor cells by enhancing glycolysis. Nature Medicine, 24(3), 360–367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Bonora, M., et al. (2018). Membrane-potential compensation reveals mitochondrial volume expansion during HSC commitment. Experimental Hematology, 68, 30-37 e1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. de Almeida, M. J., et al. (2017). Dye-independent methods reveal elevated mitochondrial mass in hematopoietic stem cells. Cell Stem Cell, 21(6), 725–729.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Papa, L., et al. (2019). Mitochondrial role in stemness and differentiation of hematopoietic stem cells. Stem Cells International, 2019, 4067162.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Nakamura-Ishizu, A., et al. (2020). Hematopoietic stem cell metabolism during development and aging. Developmental Cell, 54(2), 239–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Juntilla, M. M., et al. (2010). AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species. Blood, 115(20), 4030–4038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Khatri, R., et al. (2016). Reactive oxygen species limit the ability of bone marrow stromal cells to support hematopoietic reconstitution in aging mice. Stem Cells and Development, 25(12), 948–958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ludin, A., et al. (2014). Reactive oxygen species regulate hematopoietic stem cell self-renewal, migration and development, as well as their bone marrow microenvironment. Antioxidants & Redox Signaling, 21(11), 1605–1619.

    Article  CAS  Google Scholar 

  132. Takubo, K., et al. (2010). Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell, 7(3), 391–402.

    Article  CAS  PubMed  Google Scholar 

  133. Kajla, S., et al. (2012). A crucial role for Nox 1 in redox-dependent regulation of Wnt-beta-catenin signaling. The FASEB Journal, 26(5), 2049–2059.

    Article  CAS  PubMed  Google Scholar 

  134. Duncan, A. W., et al. (2005). Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nature Immunology, 6(3), 314–322.

    Article  CAS  PubMed  Google Scholar 

  135. Itoh, M., et al. (2019). Hypoxia Up-regulates HIF expression while suppressing cell growth and NOTCH activity in leukaemia cells. Anticancer Research, 39(8), 4165–4170.

    Article  CAS  PubMed  Google Scholar 

  136. Miharada, K., et al. (2014). Dppa5 improves hematopoietic stem cell activity by reducing endoplasmic reticulum stress. Cell Reports, 7(5), 1381–1392.

    Article  CAS  PubMed  Google Scholar 

  137. Sigurdsson, V., et al. (2016). Bile acids protect expanding hematopoietic stem cells from unfolded protein stress in fetal liver. Cell Stem Cell, 18(4), 522–532.

    Article  CAS  PubMed  Google Scholar 

  138. Crawford, L. W., et al. (2010). Histology atlas of the developing mouse hepatobiliary system with emphasis on embryonic days 9.5–18.5. Toxicologic Pathology, 38(6), 872–906.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Reimold, A. M., et al. (2000). An essential role in liver development for transcription factor XBP-1. Genes & Development, 14(2), 152–157.

    CAS  Google Scholar 

  140. Zhang, C. C., et al. (2014) Hypoxia and metabolic properties of hematopoietic stem cells, Antioxidants & Redox Signaling, 20(12), 1891 – 901.

  141. Wouters, B. G., et al. (2008). Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nature Reviews. Cancer, 8(11), 851–864.

    Article  CAS  PubMed  Google Scholar 

  142. Delbrel, E., et al. (2018). HIF-1alpha triggers ER stress and CHOP-mediated apoptosis in alveolar epithelial cells, a key event in pulmonary fibrosis. Scientific Reports, 8(1), 17939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Song, S., et al. (2018). Intermittent-hypoxia-induced autophagy activation through the ER-stress-related PERK/eIF2alpha/ATF4 pathway is a protective response to pancreatic beta-cell apoptosis. Cellular Physiology and Biochemistry, 51(6), 2955–2971.

    Article  CAS  PubMed  Google Scholar 

  144. Bettigole, S. E., et al. (2015). The transcription factor XBP1 is selectively required for eosinophil differentiation. Nature Immunology, 16(8), 829–837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Zheng, P., et al. (2013). Cytopenia and autoimmune diseases: a vicious cycle fueled by mTOR dysregulation in hematopoietic stem cells. Journal of Autoimmunity, 41, 182–187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Miriuka, S. G., et al. (2006). mTOR inhibition induces endothelial progenitor cell death. American Journal of Transplantation, 6(9), 2069–2079.

    Article  CAS  PubMed  Google Scholar 

  147. Darici, S., et al. (2020) Targeting PI3K/Akt/mTOR in AML: Rationale and clinical evidence. Journal of Clinical Medicine, 9(9). https://doi.org/10.1111/odi.12070.

  148. Yang, A., et al. (2015). Differential reponses of hematopoietic stem and progenitor cells to mTOR inhibition. Stem Cells International, 2015, 561404.

    PubMed  PubMed Central  Google Scholar 

  149. Luo, Y., et al. (2014). Rapamycin enhances long-term hematopoietic reconstitution of ex vivo expanded mouse hematopoietic stem cells by inhibiting senescence. Transplantation, 97(1), 20–29.

    Article  CAS  PubMed  Google Scholar 

  150. Rohrabaugh, S. L., et al. (2011). Ex vivo rapamycin treatment of human cord blood CD34 + cells enhances their engraftment of NSG mice. Blood Cells, Molecules & Diseases, 46(4), 318–320.

    Article  CAS  Google Scholar 

  151. Ito, K., et al. (2004). Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature, 431(7011), 997–1002.

    Article  CAS  PubMed  Google Scholar 

  152. Simsek, T., et al. (2010). The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell, 7(3), 380–390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Wilkinson, A. C., et al. (2019). Long-term ex vivo haematopoietic-stem-cell expansion allows nonconditioned transplantation. Nature, 571(7763), 117–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Gadhoum, S. Z., et al. (2016). Anti-CD44 antibodies inhibit both mTORC1 and mTORC2: a new rationale supporting CD44-induced AML differentiation therapy. Leukemia, 30(12), 2397–2401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Majka, M., et al. (2002). Thrombopoietin, but not cytokines binding to gp130 protein-coupled receptors, activates MAPKp42/44, AKT, and STAT proteins in normal human CD34 + cells, megakaryocytes, and platelets. Experimental Hematology, 30(7), 751–760.

    Article  CAS  PubMed  Google Scholar 

  156. Kunitama, M., et al. (1997). Protein kinase C and c-myc gene activation pathways in thrombopoietin signal transduction. Biochemical and Biophysical Research Communications, 231(2), 290–294.

    Article  CAS  PubMed  Google Scholar 

  157. Chanprasert, S., et al. (2006). Thrombopoietin (TPO) induces c-myc expression through a PI3K- and MAPK-dependent pathway that is not mediated by Akt, PKCzeta or mTOR in TPO-dependent cell lines and primary megakaryocytes. Cellular Signalling, 18(8), 1212–1218.

    Article  CAS  PubMed  Google Scholar 

  158. Satoh, Y., et al. (2004). Roles for c-Myc in self-renewal of hematopoietic stem cells. The Journal of Biological Chemistry, 279(24), 24986–24993.

    Article  CAS  PubMed  Google Scholar 

  159. Bai, T., et al. (2019). Expansion of primitive human hematopoietic stem cells by culture in a zwitterionic hydrogel. Journal of Natural Medicines, 25(10), 1566–1575.

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to acknowledge funding from UIDB/04539/2020, Healthy Aging 2020-CENTRO-01-0145-FEDER-000012-N2323, POCI-01-0145-FEDER-007440, and the NIH 5P30 AG028718.

Author information

Authors and Affiliations

Authors

Contributions

Hélia Fernandes and João Moura conceived and wrote the manuscript, Eugénia Carvalho critically reviewed and discussed the manuscript. All authors approved the final version of this manuscript.

Corresponding author

Correspondence to João Moura.

Ethics declarations

Ethical Approval

Not applicable. 

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Conflict of Interest

The authors have no potential conflicts of interest to disclose. 

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The mTOR pathway integrates metabolic, oxidative and endoplasmic reticulum stress and other environmental signals that condition HSC fate.

• Bone marrow microenvironment suppresses HSC expansion through mTOR signaling, protecting HSC from exhaustion.

• Many strategies leading to ex vivo HSC expansion indirectly suppress mTOR signaling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, H., Moura, J. & Carvalho, E. mTOR Signaling as a Regulator of Hematopoietic Stem Cell Fate. Stem Cell Rev and Rep 17, 1312–1322 (2021). https://doi.org/10.1007/s12015-021-10131-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-021-10131-z

Keywords

Navigation