Tissue Engineering Strategies to Increase Osteochondral Regeneration of Stem Cells; a Close Look at Different Modalities

Abstract

The homeostasis of osteochondral tissue is tightly controlled by articular cartilage chondrocytes and underlying subchondral bone osteoblasts via different internal and external clues. As a correlate, the osteochondral region is frequently exposed to physical forces and mechanical pressure. On this basis, distinct sets of substrates and physicochemical properties of the surrounding matrix affect the regeneration capacity of chondrocytes and osteoblasts. Stem cells are touted as an alternative cell source for the alleviation of osteochondral diseases. These cells appropriately respond to the physicochemical properties of different biomaterials. This review aimed to address some of the essential factors which participate in the chondrogenic and osteogenic capacity of stem cells. Elements consisted of biomechanical forces, electrical fields, and biochemical and physical properties of the extracellular matrix are the major determinant of stem cell differentiation capacity. It is suggested that an additional certain mechanism related to signal-transduction pathways could also mediate the chondro-osteogenic differentiation of stem cells. The discovery of these clues can enable us to modulate the regeneration capacity of stem cells in osteochondral injuries and lead to the improvement of more operative approaches using tissue engineering modalities.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data Availability

Not applicable.

References

  1. 1

    Ansari, S., Khorshidi, S., & Karkhaneh, A. J. A. B. (2019) Engineering of gradient osteochondral tissue: From nature to lab. Acta Biomaterialia, 87, 41–54.

  2. 2

    Liang, X., Duan, P., Gao, J., Guo, R., Qu, Z., Li, X., He, Y., Yao, H., Ding, J. J. A. B. S., & Engineering (2018) Bilayered PLGA/PLGA-HAp composite scaffold for osteochondral tissue engineering and tissue regeneration. ACS Biomaterials Science & Engineering, 4(10), 3506–3521.

  3. 3

    Tamaddon, M., Wang, L., Liu, Z., & Liu, C. (2018). Osteochondral tissue repair in osteoarthritic joints: clinical challenges and opportunities in tissue engineering. Bio-design and Manufacturing, 1(2), 101–114.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4

    Singh, Y. P., Moses, J. C., Bhardwaj, N., & Mandal, B. B. (2018). Injectable hydrogels: a new paradigm for osteochondral tissue engineering. Journal of Materials Chemistry B, 6(35), 5499–5529.

    CAS  PubMed  Article  Google Scholar 

  5. 5

    Zhang, B., Huang, J., & Narayan, R. J. (2020). Gradient scaffolds for osteochondral tissue engineering and regeneration. Journal of Materials Chemistry B, 8(36), 8149–8170.

    CAS  PubMed  Article  Google Scholar 

  6. 6

    Taheem, D. K., Jell, G., & Gentleman, E. (2020). Hypoxia-inducible factor-1α in osteochondral tissue engineering. Tissue Engineering Part B: Reviews, 26(2), 105–115.

    CAS  Article  Google Scholar 

  7. 7

    Mendes, L., Katagiri, H., Tam, W., Chai, Y., Geris, L., Roberts, S., & Luyten, F. (2018). Advancing osteochondral tissue engineering: bone morphogenetic protein, transforming growth factor, and fibroblast growth factor signaling drive ordered differentiation of periosteal cells resulting in stable cartilage and bone formation in vivo. Stem cell research & therapy, 9(1), 42.

    CAS  Article  Google Scholar 

  8. 8

    Tanoue, H., Morinaga, J., Yoshizawa, T., Yugami, M., Itoh, H., Nakamura, T., Uehara, Y., Masuda, T., Odagiri, H., & Sugizaki, T. (2018). Angiopoietin-like protein 2 promotes chondrogenic differentiation during bone growth as a cartilage matrix factor. Osteoarthritis and cartilage, 26(1), 108–117.

    CAS  PubMed  Article  Google Scholar 

  9. 9

    Clearfield, D., Nguyen, A., & Wei, M. (2018). Biomimetic multidirectional scaffolds for zonal osteochondral tissue engineering via a lyophilization bonding approach. Journal of Biomedical Materials Research Part A, 106(4), 948–958.

    CAS  PubMed  Article  Google Scholar 

  10. 10

    Diaz-Rodriguez, P., Erndt‐Marino, J. D., Gharat, T., Munoz Pinto, D. J., Samavedi, S., Bearden, R., Grunlan, M. A., Saunders, W. B., & Hahn, M. S. (2019). Toward zonally tailored scaffolds for osteochondral differentiation of synovial mesenchymal stem cells. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 107(6), 2019–2029.

    CAS  PubMed  Article  Google Scholar 

  11. 11

    You, Q., Liu, Z., Zhang, J., Shen, M., Li, Y., Jin, Y., & Liu, Y. (2020). Human amniotic mesenchymal stem cell sheets encapsulating cartilage particles facilitate repair of rabbit osteochondral defects. The American Journal of Sports Medicine, 48(3), 599–611.

    PubMed  Article  Google Scholar 

  12. 12

    Mahmoud, E. E., Adachi, N., Mawas, A. S., Gaarour, O. S., & Ochi, M. (2019). Coculturing of mesenchymal stem cells of different sources improved regenerative capability of osteochondral defect in the mature rabbit: An in vivo study. Journal of Orthopaedic Surgery, 27(2), 2309499019839850.

    PubMed  Article  Google Scholar 

  13. 13

    Larson, B. L., Yu, S. N., Park, H., Estes, B. T., Moutos, F. T., Bloomquist, C. J., Wu, P. B., Welter, J. F., Langer, R., & Guilak, F. (2019). Chondrogenic, hypertrophic, and osteochondral differentiation of human mesenchymal stem cells on three-dimensionally woven scaffolds. Journal of tissue engineering and regenerative medicine, 13(8), 1453–1465.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14

    Klontzas, M. E., Kenanidis, E. I., Heliotis, M., Tsiridis, E., & Mantalaris, A. (2015). Bone and cartilage regeneration with the use of umbilical cord mesenchymal stem cells. Expert opinion on biological therapy, 15(11), 1541–1552.

    PubMed  Article  CAS  Google Scholar 

  15. 15

    Bellavia, D., Veronesi, F., Carina, V., Costa, V., Raimondi, L., De Luca, A., Alessandro, R., Fini, M., & Giavaresi, G. (2018). Gene therapy for chondral and osteochondral regeneration: is the future now? Cellular and molecular life sciences, 75(4), 649–667.

    CAS  PubMed  Article  Google Scholar 

  16. 16

    Ferreira, S. A., Motwani, M. S., Faull, P. A., Seymour, A. J., Tracy, T., Enayati, M., Taheem, D. K., Salzlechner, C., Haghighi, T., & Kania, E. M. (2018). Bi-directional cell-pericellular matrix interactions direct stem cell fate. Nature communications, 9(1), 1–12.

    Article  CAS  Google Scholar 

  17. 17

    Hiew, V. V., Simat, S. F. B., & Teoh, P. L. (2018). The advancement of biomaterials in regulating stem cell fate. Stem Cell Reviews and Reports, 14(1), 43–57.

    CAS  PubMed  Article  Google Scholar 

  18. 18

    Abdulghani, S., & Morouço, P. G. (2019). Biofabrication for osteochondral tissue regeneration: bioink printability requirements. Journal of Materials Science: Materials in Medicine, 30(2), 20.

    PubMed  Google Scholar 

  19. 19

    Wongin, S., Narkbunnam, R., Waikakul, S., Chotiyarnwong, P., Aresanasuwan, T., Roytrakul, S., & Viravaidya-Pasuwat, K. (2020) Construction and evaluation of osteochondral-like tissue using chondrocyte sheet and cancellous bone. Tissue Engineering Part A. doi: 10.1089/ten.TEA.2020.0107. Online ahead of print

  20. 20

    Salinas, E. Y., Hu, J. C., & Athanasiou, K. (2018). A guide for using mechanical stimulation to enhance tissue-engineered articular cartilage properties. Tissue Engineering Part B: Reviews, 24(5), 345–358.

    Article  Google Scholar 

  21. 21

    Fahy, N., Alini, M., & Stoddart, M. J. (2018). Mechanical stimulation of mesenchymal stem cells: Implications for cartilage tissue engineering. Journal of Orthopaedic Research®, 36(1), 52–63.

    Google Scholar 

  22. 22

    Sonam, S., Sathe, S. R., Yim, E. K., Sheetz, M. P., & Lim, C. T. (2016). Cell contractility arising from topography and shear flow determines human mesenchymal stem cell fate. Scientific reports, 6, 20415.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23

    Steward, A. J., & Kelly, D. J. (2015). Mechanical regulation of mesenchymal stem cell differentiation. Journal of anatomy, 227(6), 717–731.

    PubMed  Article  Google Scholar 

  24. 24

    He, L., Ahmad, M., & Perrimon, N. (2019). Mechanosensitive channels and their functions in stem cell differentiation. Experimental Cell Research, 374(2), 259–265.

    CAS  PubMed  Article  Google Scholar 

  25. 25

    Zhao, Z., Li, Y., Wang, M., Zhao, S., Zhao, Z., & Fang, J. (2020). Mechanotransduction pathways in the regulation of cartilage chondrocyte homoeostasis. Journal of Cellular and Molecular Medicine, 24(10), 5408–5419.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26

    Tan, A. R., & Hung, C. T. J. Sctm (2017) Concise review: Mesenchymal stem cells for functional cartilage tissue engineering: Taking cues from chondrocyte-based constructs. Stem Cells Translational Medicine, 6(4), 1295–1303.

  27. 27

    Farooqi, A. R., Bader, R., & van Rienen, U. J. T. E. P. B. R. (2019) Numerical study on electromechanics in cartilage tissue with respect to its electrical properties. Tissue Engineering. Part B, Reviews, 25(2), 152–166.

  28. 28

    Choi, J. R., Yong, K. W., & Choi, J. Y. (2018). Effects of mechanical loading on human mesenchymal stem cells for cartilage tissue engineering. Journal of cellular physiology, 233(3), 1913–1928.

    CAS  PubMed  Article  Google Scholar 

  29. 29

    Katsumi, A., Orr, A. W., Tzima, E., Schwartz, M. A. J., & JoB, C. (2004). Integrins in mechanotransduction. The Journal of Biological Chemistry, 279(13), 12001–12004.

    CAS  PubMed  Article  Google Scholar 

  30. 30

    Steinmetz, N. J., Aisenbrey, E. A., Westbrook, K. K., Qi, H. J., & Bryant, S. J. J. Ab (2015) Mechanical loading regulates human MSC differentiation in a multi-layer hydrogel for osteochondral tissue engineering. Acta Biomaterialia, 21, 142–153.

  31. 31

    Grodzinsky, A. J., Levenston, M. E., Jin, M., & Frank, E. H. J. Arobe (2000) Cartilage tissue remodeling in response to mechanical forces. Annual Review of Biomedical Engineering, 2(1), 691–713.

  32. 32

    Alfieri, R., Vassalli, M., & Viti, F. (2019) Flow-induced mechanotransduction in skeletal cells. Biophysical Reviews, 1–15.

  33. 33

    Vining, K. H., & Mooney, D. J. (2017). Mechanical forces direct stem cell behaviour in development and regeneration. Nature Reviews. Molecular Cell Biology, 18(12), 728–742.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34

    Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell, 126(4), 677–689.

    CAS  PubMed  Article  Google Scholar 

  35. 35

    Lerman, J., Willis, M., Gregory, G., & Eger, E. (1983). Osmolarity determines the solubility of anesthetics in aqueous solutions at 37 C. Anesthesiology: The Journal of the American Society of Anesthesiologists, 59(6), 554–558.

    CAS  Article  Google Scholar 

  36. 36

    Liu, H., Beauvoit, B., Kimura, M., & Chance, B. (1996). Dependence of tissue optical properties on solute-induced changes in refractive index and osmolarity. Journal of Biomedical Optics, 1(2), 200–212.

    CAS  PubMed  Article  Google Scholar 

  37. 37

    Ahmadyan, S., Kabiri, M., Hanaee-Ahvaz, H., & Farazmand, A. (2018). Osmolyte type and the osmolarity level affect chondrogenesis of mesenchymal stem cells. Applied Biochemistry and Biotechnology, 185(2), 507–523.

    CAS  PubMed  Article  Google Scholar 

  38. 38

    Rowley, N.M., et al., (2011) Hippocampal betaine/GABA transporter mRNA expression is not regulated by inflammation or dehydration post-status epilepticus. J Neurochem, 117(1): 82-90.

  39. 39

    Hall, A. C. (2019). The role of chondrocyte morphology and volume in controlling phenotype—implications for osteoarthritis, cartilage repair, and cartilage engineering. Current Rheumatology Reports, 21(8), 38.

    PubMed  PubMed Central  Article  Google Scholar 

  40. 40

    Lima, A., May, G., Díaz-Colunga, J., Pedreiro, S., Paiva, A., Ferreira, L., Enver, T., Iborra, F., & das Neves, R. P. (2018). Osmotic modulation of chromatin impacts on efficiency and kinetics of cell fate modulation. Scientific Reports, 8(1), 1–14.

    Article  CAS  Google Scholar 

  41. 41

    Caron, M. M., van der Windt, A. E., Emans, P. J., van Rhijn, L. W., Jahr, H., & Welting, T. J. (2013). Osmolarity determines the in vitro chondrogenic differentiation capacity of progenitor cells via nuclear factor of activated T-cells 5. Bone, 53(1), 94–102.

    CAS  PubMed  Article  Google Scholar 

  42. 42

    Mang, T., Lindemann, S., & Gigout, A. (2020). Increasing the medium osmolarity reduces the inflammatory status of human OA chondrocytes and increases their responsiveness to GDF-5. International Journal of Molecular Sciences, 21(2), 531.

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  43. 43

    Sieber, S., Michaelis, M., Gühring, H., Lindemann, S., & Gigout, A. (2020). Importance of osmolarity and oxygen tension for cartilage tissue engineering. BioResearch Open Access, 9(1), 106–115.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44

    Tan Timur, U., Caron, M., van den Akker, G., van der Windt, A., Visser, J., van Rhijn, L., Weinans, H., Welting, T., Emans, P., & Jahr, H. (2019). Increased TGF-β and BMP levels and improved chondrocyte-specific marker expression in vitro under cartilage-specific physiological osmolarity. International Journal of Molecular Sciences, 20(4), 795.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  45. 45

    Eltawil, N. M., Ahmed, S., Chan, L. H., Simpson, A. H. R., & Hall, A. C. (2018). Chondroprotection in models of cartilage injury by raising the temperature and osmolarity of irrigation solutions. Cartilage, 9(3), 313–320.

    CAS  PubMed  Article  Google Scholar 

  46. 46

    Vaca-González, J. J., Guevara, J. M., Moncayo, M. A., Castro-Abril, H., Hata, Y., & Garzón-Alvarado, D. A. (2019). Biophysical stimuli: a review of electrical and mechanical stimulation in hyaline cartilage. Cartilage, 10(2), 157–172.

    PubMed  Article  Google Scholar 

  47. 47

    Xu, B., Ye, J., Yuan, F.-Z., Zhang, J.-Y., Chen, Y.-R., Fan, B.-S., Jiang, D., Jiang, W.-B., Wang, X., & Yu, J.-K. (2020) Advances of Stem Cell-Laden Hydrogels With Biomimetic Microenvironment for Osteochondral Repair. Frontiers in Bioengineering and Biotechnology, 8, 247.

  48. 48

    Wang, M., Yang, Y., Han, L., Xu, F., & Li, F. (2020). Cell mechanical microenvironment for cell volume regulation. Journal of Cellular Physiology, 235(5), 4070–4081.

    CAS  PubMed  Article  Google Scholar 

  49. 49

    Meinert, C., Schrobback, K., Hutmacher, D. W., & Klein, T. J. (2017). A novel bioreactor system for biaxial mechanical loading enhances the properties of tissue-engineered human cartilage. Scientific Reports, 7(1), 1–14.

    CAS  Article  Google Scholar 

  50. 50

    Yang, Z., Wu, Y., Yin, L., & Eng, H. L. (2019) Impact of mechanobiological perturbation in cartilage tissue engineering. In: Advances in Biomechanics and Tissue Regeneration (pp. 379–392). Amsterdam: Elsevier.

  51. 51

    Yang, L., Ge, L., & van Rijn, P. (2020) Synergistic effect of cell-derived extracellular matrix and topography on osteogenesis of mesenchymal stem cells. ACS Applied Materials & Interfaces.12 (23), 25591–25603

  52. 52

    Geoghegan, I. P., Hoey, D. A., & McNamara, L. M. (2019). Integrins in osteocyte biology and mechanotransduction. Current Osteoporosis Reports, 17(4), 195–206.

    PubMed  Article  Google Scholar 

  53. 53

    Servin-Vences, M. R., Richardson, J., Lewin, G. R., & Poole, K. (2018). Mechanoelectrical transduction in chondrocytes. Clinical and Experimental Pharmacology and Physiology, 45(5), 481–488.

    CAS  PubMed  Article  Google Scholar 

  54. 54

    Vainieri, M., Wahl, D., Alini, M., van Osch, G., & Grad, S. (2018). Mechanically stimulated osteochondral organ culture for evaluation of biomaterials in cartilage repair studies. Acta Biomaterialia, 81, 256–266.

    CAS  PubMed  Article  Google Scholar 

  55. 55

    Kavand, H., Rahaie, M., Haghighipour, N., Bonakdar, S., & Koohsorkhi, J. (2018). Magneto-mechanical stimulation of bone marrow mesenchymal stromal cells for chondrogenic differentiation studies. Journal of Computational Applied Mechanics, 49(2), 386–394.

    Google Scholar 

  56. 56

    Gungordu, H. I., Bao, M., van Helvert, S., Jansen, J. A., Leeuwenburgh, S. C., & Walboomers, X. F. (2019). Effect of mechanical loading and substrate elasticity on the osteogenic and adipogenic differentiation of mesenchymal stem cells. Journal of Tissue Engineering and Regenerative Medicine, 13(12), 2279–2290.

    CAS  PubMed  Article  Google Scholar 

  57. 57

    Szczesny, S. E., & Mauck, R. L. (2017) The nuclear option: evidence implicating the cell nucleus in mechanotransduction. Journal of Biomechanical Engineering, 139(2):0210061-02100616

  58. 58

    Elashry, M. I., Gegnaw, S. T., Klymiuk, M. C., Wenisch, S., & Arnhold, S. (2019). Influence of mechanical fluid shear stress on the osteogenic differentiation protocols for Equine adipose tissue-derived mesenchymal stem cells. Acta Histochemica, 121(3), 344–353.

    CAS  PubMed  Article  Google Scholar 

  59. 59

    Liedert, A., Nemitz, C., Haffner-Luntzer, M., Schick, F., Jakob, F., & Ignatius, A. (2020). Effects of estrogen receptor and Wnt signaling activation on mechanically induced bone formation in a mouse model of postmenopausal bone loss. International Journal of Molecular Sciences, 21(21), 8301.

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  60. 60

    Islam, A., Younesi, M., Mbimba, T., & Akkus, O. (2016). Collagen substrate stiffness anisotropy affects cellular elongation, nuclear shape, and stem cell fate toward anisotropic tissue lineage. Advanced Healthcare Materials, 5(17), 2237–2247.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61

    Kumar, A., Placone, J. K., & Engler, A. J. (2017). Understanding the extracellular forces that determine cell fate and maintenance. Development, 144(23), 4261–4270.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62

    Hendrikson, W. J., Deegan, A. J., Yang, Y., van Blitterswijk, C. A., Verdonschot, N., Moroni, L., & Rouwkema, J. (2017). Influence of additive manufactured scaffold architecture on the distribution of surface strains and fluid flow shear stresses and expected osteochondral cell differentiation. Frontiers in Bioengineering and Biotechnology, 5, 6.

    PubMed  PubMed Central  Google Scholar 

  63. 63

    Ogura, T., Minas, T., Tsuchiya, A., & Mizuno, S. (2019). Effects of hydrostatic pressure and deviatoric stress on human articular chondrocytes for designing neo-cartilage construct. Journal of Tissue Engineering and Regenerative Medicine, 13(7), 1143–1152.

    CAS  PubMed  Google Scholar 

  64. 64

    Dong, F., Liu, T., Jin, H., & Wang, W. (2018). Chimaphilin inhibits human osteosarcoma cell invasion and metastasis through suppressing the TGF-β1-induced epithelial-to-mesenchymal transition markers via PI-3K/Akt, ERK1/2, and Smad signaling pathways. Canadian Journal of Physiology and Pharmacology, 96(1), 1–7.

    CAS  PubMed  Article  Google Scholar 

  65. 65

    Wang, J., Wang, C., Zhang, N., Tong, W., Zhang, Y., Shan, S., Zhang, X., & Li, Q. (2016). Mechanical stimulation orchestrates the osteogenic differentiation of human bone marrow stromal cells by regulating HDAC1. Cell Death & Disease, 7(5), e2221–e2221.

    CAS  Article  Google Scholar 

  66. 66

    Denison, T. A., Doroudi, M., Schwartz, Z., & Boyan, B. D. (2017). Fluid shear stress inhibits differentiation of growth plate chondrocytes, partially via integrin beta 1. Current Trends in Biomedical Engineering & Biosciences, 3(1), 1–11.

    Google Scholar 

  67. 67

    Li, M., Yan, J., Chen, X., Tam, W., Zhou, L., Liu, T., Pan, G., Lin, J., Yang, H., & Pei, M. (2018). Spontaneous up-regulation of SIRT1 during osteogenesis contributes to stem cells’ resistance to oxidative stress. European Journal of Cell Biology, 119(6), 4928–4944.

    CAS  Google Scholar 

  68. 68

    Stavenschi, E., & Hoey, D. A. (2019). Pressure-induced mesenchymal stem cell osteogenesis is dependent on intermediate filament remodeling. The FASEB Journal, 33(3), 4178–4187.

    CAS  PubMed  Article  Google Scholar 

  69. 69

    Khan, A. U., Qu, R., Fan, T., Ouyang, J., & Dai, J. (2020). A glance on the role of actin in osteogenic and adipogenic differentiation of mesenchymal stem cells. Stem Cell Research & Therapy, 11(1), 1–14.

    Article  CAS  Google Scholar 

  70. 70

    Zhang, L., Jiang, G., Zhao, X., & Gong, Y. (2016). Dimethyloxalylglycine promotes bone marrow mesenchymal stem cell osteogenesis via Rho/ROCK signaling. Cellular Physiology and Biochemistry, 39(4), 1391–1403.

    CAS  PubMed  Article  Google Scholar 

  71. 71

    Castiglioni, S., Romeo, V., Locatelli, L., Zocchi, M., Zecchini, S., & Maier, J. A. (2019). The simultaneous downregulation of TRPM7 and MagT1 in human mesenchymal stem cells in vitro: Effects on growth and osteogenic differentiation. Biochemical and Biophysical Research Communications, 513(1), 159–165.

    CAS  PubMed  Article  Google Scholar 

  72. 72

    Hong, F., Wu, S., Zhang, C., Li, L., Chen, J., Fu, Y., & Wang, J. (2020) TRPM7 Upregulate the Activity of SMAD1 through PLC Signaling Way to Promote Osteogenesis of hBMSCs. BioMed Research International, 2020, 9458983.

  73. 73

    Canadas, R. F., Marques, A. P., Reis, R. L., & Oliveira, J. M. (2018) Bioreactors and microfluidics for osteochondral interface maturation. In Osteochondral Tissue Engineering (pp. 395–420). Berlin: Springer.

  74. 74

    Ogura, T., Minas, T., Tsuchiya, A., Mizuno, S. J. Jote, medicine r (2019) Effects of hydrostatic pressure and deviatoric stress on human articular chondrocytes for designing neo-cartilage construct. Journal of Tissue Engineering and Regenerative Medicine, 13(7), 1143–1152.

  75. 75

    Choi, J. R., Yong, K. W., & Choi, J. Y. J. Jocp (2018) Effects of mechanical loading on human mesenchymal stem cells for cartilage tissue engineering. Journal of Cellular Physiology, 233(3), 1913–1928.

  76. 76

    Stojkovska, J., Bugarski, B., & Obradovic, B. J. JoM. S. M. M. (2010) Evaluation of alginate hydrogels under in vivo–like bioreactor conditions for cartilage tissue engineering. Journal of Materials Science. Materials in Medicine, 21(10), 2869–2879.

  77. 77

    Huang, A. H., Baker, B. M., Ateshian, G. A., & Mauck, R. L. J. E. C. M. (2012) Sliding contact loading enhances the tensile properties of mesenchymal stem cell-seeded hydrogels. European Cells & Materials, 24, 29–45.

  78. 78

    Aziz, A. H., Eckstein, K., Ferguson, V. L., & Bryant, S. J. (2019). The effects of dynamic compressive loading on human mesenchymal stem cell osteogenesis in the stiff layer of a bilayer hydrogel. Journal of Tissue Engineering and Regenerative Medicine, 13(6), 946–959.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Delco, M. L., Goodale, M., Talts, J. F., Pownder, S. L., Koff, M. F., Miller, A. D., Nixon, B., Bonassar, L. J., Lundgren-Åkerlund, E., & Fortier, L. A. (2020). Integrin α10β1-selected mesenchymal stem cells mitigate the progression of osteoarthritis in an Equine Talar impact model. The American Journal of Sports Medicine, 48(3), 612–623.

    PubMed  Article  Google Scholar 

  80. 80

    Verbruggen, S. W., Vaughan, T. J., & McNamara, L. M. (2014). Fluid flow in the osteocyte mechanical environment: a fluid–structure interaction approach. Biomechanics and Modeling in Mechanobiology, 13(1), 85–97.

    PubMed  Article  Google Scholar 

  81. 81

    Geoghegan, I. P., Hoey, D. A., & McNamara, L. M. J. C. O. R. (2019) Integrins in Osteocyte Biology and Mechanotransduction. Curr Osteoporos Rep, 17(4):195-206

  82. 82

    Verbruggen, S. W., Vaughan, T. J., & McNamara, L. M. J. B. mechanobiology mi (2014) Fluid flow in the osteocyte mechanical environment: a fluid–structure interaction approach. Biomechanics and Modeling in Mechanobiology, 13(1), 85–97.

  83. 83

    Servin-Vences, M. R., Richardson, J., Lewin, G. R., Poole, K. J. C., Pharmacology, E., & Physiology (2018) Mechanoelectrical transduction in chondrocytes. Clinical and Experimental Pharmacology & Physiology, 45(5), 481–488.

  84. 84

    Ma, B., Leijten, J. C. H., Wu, L., Kip, M., van Blitterswijk, C., Post, J. N., & Karperien, M. (2013). Gene expression profiling of dedifferentiated human articular chondrocytes in monolayer culture. Osteoarthritis and Cartilage, 21(4), 599–603.

    CAS  PubMed  Article  Google Scholar 

  85. 85

    Ma, B., Leijten, J. C. H., Wu, L., Kip, M., van Blitterswijk, C., Post, J. N., & cartilage Karperien, M. J. O. (2013) Gene expression profiling of dedifferentiated human articular chondrocytes in monolayer culture. Osteoarthritis and Cartilage, 21(4), 599–603.

  86. 86

    Bleuel, J., Zaucke, F., Brüggemann, G.-P., & Niehoff, A. J. P. O. (2015) Effects of cyclic tensile strain on chondrocyte metabolism: a systematic review. PLoS One, 10(3), e0119816.

  87. 87

    Vaca-González, J. J., Guevara, J. M., Moncayo, M. A., Castro-Abril, H., Hata, Y., & Garzón-Alvarado, D. A. J. C. (2019) Biophysical stimuli: a review of electrical and mechanical stimulation in hyaline cartilage. Cartilage, 10(2), 157–172.

  88. 88

    Gardner, O., Fahy, N., Alini, M., & Stoddart, M. (2016). Differences in human mesenchymal stem cell secretomes during chondrogenic induction. European Cells and Materials, 31, 221–235.

    CAS  PubMed  Article  Google Scholar 

  89. 89

    Nakagawa, K., Teramura, T., Takehara, T., Onodera, Y., Hamanishi, C., Akagi, M., & Fukuda, K. J. I. R. (2012) Cyclic compression-induced p38 activation and subsequent MMP13 expression requires Rho/ROCK activity in bovine cartilage explants. Inflammation Research, 61(10), 1093–1100.

  90. 90

    Castro, R., Cunha, F., Silva, F. Jr., & cartilage Rocha, F. J. O. (2006) A quantitative approach to measure joint pain in experimental osteoarthritis—evidence of a role for nitric oxide. Osteoarthritis and Cartilage, 14(8), 769–776.

  91. 91

    Ismail, H. M., Miotla-Zarebska, J., Troeberg, L., Tang, X., Stott, B., Yamamoto, K., Nagase, H., Fosang, A. J., Vincent, T. L., Saklatvala, J. J. A., & Rheumatology (2016) Brief report: JNK‐2 controls aggrecan degradation in murine articular cartilage and the development of experimental osteoarthritis. Arthritis and Rheumatism, 68(5), 1165–1171.

  92. 92

    Yan, Y., Sun, H., Gong, Y., Yan, Z., Zhang, X., Guo, Y., & Wang, Y. J. Ijomm (2016) Mechanical strain promotes osteoblastic differentiation through integrin-β1-mediated β-catenin signaling. International Journal of Molecular Medicine, 38(2), 594–600.

  93. 93

    Xiang, W., Jiang, T., Hao, X., Wang, R., Yao, X., Sun, K., Guo, F., & Xu, T. J. Ls (2019) Primary cilia and autophagy interaction is involved in mechanical stress mediated cartilage development via ERK/mTOR axis. Life Sciences, 218, 308–313.

  94. 94

    Pala, R., Alomari, N., & Nauli, S. M. J. Ijoms (2017) Primary cilium-dependent signaling mechanisms. International Journal of Molecular Sciences, 18(11), 2272.

  95. 95

    Shao, Y. Y., Wang, L., Welter, J. F., & Ballock, R. T. J. B. (2012) Primary cilia modulate Ihh signal transduction in response to hydrostatic loading of growth plate chondrocytes. Bone, 50(1), 79–84.

  96. 96

    Wann, A. K., Zuo, N., Haycraft, C. J., Jensen, C. G., Poole, C. A., McGlashan, S. R., & Knight, M. M. J. T. F. J. (2012) Primary cilia mediate mechanotransduction through control of ATP-induced Ca2 + signaling in compressed chondrocytes. The FASEB Journal, 26(4), 1663–1671.

  97. 97

    Cheng, N., Guo, A., & Cui, Y. J. B. research j (2016) Intra-articular injection of Torin 1 reduces degeneration of articular cartilage in a rabbit osteoarthritis model. Bone & Joint Research, 5(6), 218–224.

  98. 98

    Coste, B., Mathur, J., Schmidt, M., Earley, T. J., Ranade, S., Petrus, M. J., Dubin, A. E., & Patapoutian, A. J. S. (2010) Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science, 330(6000), 55–60.

  99. 99

    Huebsch, N., Arany, P. R., Mao, A. S., Shvartsman, D., Ali, O. A., Bencherif, S. A., & Rivera-Feliciano, J. Mooney DJJNm (2010) Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nature Materials, 9(6), 518–526.

  100. 100

    Gauthier, N. C., & Roca-Cusachs, P. J. Coicb (2018) Mechanosensing at integrin-mediated cell–matrix adhesions: from molecular to integrated mechanisms. Current Opinion in Cell Biology, 50, 20–26.

  101. 101

    Haugh, M. G., Vaughan, T. J., & McNamara, L. M. J. Jotmbobm (2015) The role of integrin αVβ3 in osteocyte mechanotransduction. Journal of the Mechanical Behavior of Biomedical Materials, 42, 67–75.

  102. 102

    Litzenberger, J. B., Kim, J.-B., Tummala, P., & Jacobs, C. R. J. Cti (2010) β 1 integrins mediate mechanosensitive signaling pathways in osteocytes. Calcified Tissue International, 86(4), 325–332.

  103. 103

    Yeh, C. R., Chiu, J. J., Lee, C. I., Lee, P. L., Shih, Y. T., Sun, J. S., Chien, S., Cheng, C. K. J. J. B., & Research, M. (2010) Estrogen augments shear stress–induced signaling and gene expression in osteoblast-like cells via estrogen receptor–mediated expression of β1‐integrin. Journal of Bone and Mineral Research, 25(3), 627–639.

  104. 104

    Zeng, Q., Guo, Y., Liu, Y., Li, R., Zhang, X., Liu, L., Wang, Y., Zhang, X., & Zou, X. J. Br (2015) Integrin-β1, not integrin-β5, mediates osteoblastic differentiation and ECM formation promoted by mechanical tensile strain. Biological Research, 48(1), 25.

  105. 105

    Huang, X., Das, R., Patel, A., Nguyen, TDJRe, medicine t (2018) Physical stimulations for bone and cartilage regeneration. Regenerative Engineering and Translational Medicine, 4(4), 216–237.

  106. 106

    Krueger, S., Achilles, S., Zimmermann, J., Tischer, T., Bader, R., & Jonitz-Heincke, A. (2019). Re-differentiation capacity of human chondrocytes in vitro following electrical stimulation with capacitively coupled fields. Journal of Clinical Medical Research, 8(11), 1771.

    CAS  Google Scholar 

  107. 107

    Wang, J., Tang, N., Xiao, Q., Zhang, L., Li, Y., Li, J., Wang, J., Zhao, Z., & Tan, L. (2015). Pulsed electromagnetic field may accelerate in vitro endochondral ossification. Bioelectromagnetics, 36(1), 35–44.

    PubMed  Article  CAS  Google Scholar 

  108. 108

    Brighton, C. T., Wang, W., & Clark, C. C. J. J. (2008) The effect of electrical fields on gene and protein expression in human osteoarthritic cartilage explants. The Journal of Bone and Joint Surgery. American Volume, 90(4), 833–848.

  109. 109

    Akanji, O., Lee, D., & Bader, D. J. B. (2008) The effects of direct current stimulation on isolated chondrocytes seeded in 3D agarose constructs. Biorheology, 45(3–4), 229–243.

  110. 110

    Balint, R., Cassidy, N. J., & Cartmell, S. H. J. T. E. P. B. R. (2013) Electrical stimulation: a novel tool for tissue engineering. Tissue Engineering. Part B, Reviews, 19(1), 48–57.

  111. 111

    Nakasuji, S., Morita, Y., Tanaka, K., Tanaka, T., Nakamachi, E. (2009). Effect of pulse electric field stimulation on chondrocytes. In Asian Pacific Conference for Materials and Mechanics, 2009 (pp. 1–4). Japan Society of Mechanical Engineers.

  112. 112

    Wang, W., Wang, Z., Zhang, G., Clark, C. C., Brighton, C. T. J. C. O., & Research®, R. (2004) Up-regulation of chondrocyte matrix genes and products by electric fields. Clinical Orthopaedics and Related Research, 427, S163-S173.

  113. 113

    Zhou, J., He, H., Yang, L., Chen, S., Guo, H., Xia, L., Liu, H., Qin, Y., Liu, C., & Wei, X. (2012). Effects of pulsed electromagnetic fields on bone mass and Wnt/β-catenin signaling pathway in ovariectomized rats. Archives of Medical Research, 43(4), 274–282.

    CAS  PubMed  Article  Google Scholar 

  114. 114

    Zhuang, H., Wang, W., Seldes, R. M., Tahernia, A. D., Fan, H., & Brighton, C. T. (1997). Electrical stimulation induces the level of TGF-β1 mRNA in osteoblastic cells by a mechanism involving calcium/calmodulin pathway. Biochemical and Biophysical Research Communications, 237(2), 225–229.

    CAS  PubMed  Article  Google Scholar 

  115. 115

    Cifra, M., Fields, J. Z., & Farhadi, A. (2011). Electromagnetic cellular interactions. Progress in Biophysics and Molecular Biology, 105(3), 223–246.

    CAS  PubMed  Article  Google Scholar 

  116. 116

    Ross, C. L., Siriwardane, M., Almeida-Porada, G., Porada, C. D., Brink, P., Christ, G. J., & Harrison, B. S. (2015). The effect of low-frequency electromagnetic field on human bone marrow stem/progenitor cell differentiation. Stem Cell Research, 15(1), 96–108.

    PubMed  PubMed Central  Article  Google Scholar 

  117. 117

    Panagopoulos, D. J., Karabarbounis, A., & Margaritis, L. H. (2002). Mechanism for action of electromagnetic fields on cells. Biochemical and Biophysical Research Communications, 298(1), 95–102.

    CAS  PubMed  Article  Google Scholar 

  118. 118

    Ehnert, S., Schröter, S., Aspera-Werz, R. H., Eisler, W., Falldorf, K., Ronniger, M., & Nussler, A. K. (2019). Translational insights into extremely low frequency pulsed electromagnetic fields (ELF-PEMFs) for bone regeneration after trauma and orthopedic surgery. Journal of Clinical Medicine, 8(12), 2028.

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  119. 119

    Vinod, E., Kachroo, U., Rebekah, G., Thomas, S., & Ramasamy, B. (2020) In vitro chondrogenic differentiation of human articular cartilage derived chondroprogenitors using pulsed electromagnetic field. Journal of Clinical Orthopaedics and Trauma. 14 (2021) 22-28

  120. 120

    Anbarasan, S., Baraneedharan, U., Paul, S. F., Kaur, H., Rangaswami, S., & Bhaskar, E. (2016). Low dose short duration pulsed electromagnetic field effects on cultured human chondrocytes: An experimental study. Indian Journal of Orthopaedics, 50, 87–93.

    PubMed  PubMed Central  Article  Google Scholar 

  121. 121

    Wang, T., Xie, W., Ye, W., & He, C. (2019). Effects of electromagnetic fields on osteoarthritis. Biomedicine & Pharmacotherapy, 118, 109282.

    Article  Google Scholar 

  122. 122

    Ongaro, A., Pellati, A., Masieri, F. F., Caruso, A., Setti, S., Cadossi, R., Biscione, R., Massari, L., Fini, M., & De Mattei, M. (2011). Chondroprotective effects of pulsed electromagnetic fields on human cartilage explants. Bioelectromagnetics, 32(7), 543–551.

    CAS  PubMed  Article  Google Scholar 

  123. 123

    Thrivikraman, G., Boda, S. K., & Basu, B. J. B. (2018) Unraveling the mechanistic effects of electric field stimulation towards directing stem cell fate and function: A tissue engineering perspective. Biomaterials, 150, 60–86.

  124. 124

    Burdick, J. A., Chung, C., Jia, X., Randolph, M. A., & Langer, R. (2005). Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules, 6(1), 386–391.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  125. 125

    Chaudhuri, O., Gu, L., Klumpers, D., Darnell, M., Bencherif, S. A., Weaver, J. C., Huebsch, N., Lee, H. P., Lippens, E., & Duda, G. N. (2016). Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nature Materials, 15(3), 326–334.

    CAS  PubMed  Article  Google Scholar 

  126. 126

    Guilak, F., Nims, R. J., Dicks, A., Wu, C.-L., & Meulenbelt, I. (2018). Osteoarthritis as a disease of the cartilage pericellular matrix. Matrix Biology, 71, 40–50.

    PubMed  Article  CAS  Google Scholar 

  127. 127

    Khetan, S., Guvendiren, M., Legant, W. R., Cohen, D. M., Chen, C. S., & Burdick, J. A. (2013). Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nature Materials, 12(5), 458–465.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  128. 128

    Taylor-Weiner, H., Chen, S., & Engler, A. J. (2014) Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat Mater, 13(10):979-87

  129. 129

    Jaiswal, D., & Brown, J. L. (2012). Nanofiber diameter-dependent MAPK activity in osteoblasts. Journal of Biomedical Materials Research Part A, 100(11), 2921–2928.

    PubMed  Article  CAS  Google Scholar 

  130. 130

    Kim, J.-M., Yang, Y.-S., Park, K. H., Oh, H., Greenblatt, M. B., & Shim, J.-H. (2019). The ERK MAPK pathway is essential for skeletal development and homeostasis. International Journal of Molecular Sciences, 20(8), 1803.

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  131. 131

    Woods, A., Wang, G., & Beier, F. (2005). RhoA/ROCK signaling regulates Sox9 expression and actin organization during chondrogenesis. Journal of Biological Chemistry, 280(12), 11626–11634.

    CAS  Article  Google Scholar 

  132. 132

    Chang, B., Ma, C., & Liu, X. (2018). Nanofibers regulate single bone marrow stem cell osteogenesis via FAK/RhoA/YAP1 pathway. ACS Applied Materials & Interfaces, 10(39), 33022–33031.

    CAS  Article  Google Scholar 

  133. 133

    Cucchiarini, M., Asen, A.-K., Goebel, L., Venkatesan, J. K., Schmitt, G., Zurakowski, D., Menger, M. D., Laschke, M. W., & Madry, H. (2018). Effects of TGF-β overexpression via rAAV gene transfer on the early repair processes in an osteochondral defect model in minipigs. The American Journal of Sports Medicine, 46(8), 1987–1996.

    PubMed  Article  Google Scholar 

  134. 134

    Wang, Q., Zhou, C., Zhang, D., Zou, J., Liu, W., Cai, L., Cui, Y., Lai, W., & Xie, J. (2019). The involvement of the ERK-MAPK pathway in TGF-β1–mediated connexin43-gap junction formation in chondrocytes. Connective Tissue Research, 60(5), 477–486.

    CAS  PubMed  Article  Google Scholar 

  135. 135

    Karuppaiah, K., Yu, K., Lim, J., Chen, J., Smith, C., Long, F., & Ornitz, D. M. (2016). FGF signaling in the osteoprogenitor lineage non-autonomously regulates postnatal chondrocyte proliferation and skeletal growth. Development, 143(10), 1811–1822.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  136. 136

    Griffin, D. J., Ortved, K. F., Nixon, A. J., & Bonassar, L. J. (2016). Mechanical properties and structure–function relationships in articular cartilage repaired using IGF-I gene‐enhanced chondrocytes. Journal of Orthopaedic Research, 34(1), 149–153.

    CAS  PubMed  Article  Google Scholar 

  137. 137

    Frisch, J., Rey-Rico, A., Venkatesan, J. K., Schmitt, G., Madry, H., & Cucchiarini, M. (2016). rAAV-mediated overexpression of sox9, TGF-β and IGF-I in minipig bone marrow aspirates to enhance the chondrogenic processes for cartilage repair. Gene Therapy, 23(3), 247–255.

    CAS  PubMed  Article  Google Scholar 

  138. 138

    Morscheid, S., Venkatesan, J. K., Rey-Rico, A., Schmitt, G., & Cucchiarini, M. (2019). Remodeling of human osteochondral defects via rAAV-mediated co-overexpression of TGF-β and IGF-I from implanted human bone marrow-derived mesenchymal stromal cells. Journal of Clinical Medicine, 8(9), 1326.

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  139. 139

    Jing, X., Ye, Y., Bao, Y., Zhang, J., Huang, J., Wang, R., Guo, J., & Guo, F. (2018). Mechano-growth factor protects against mechanical overload induced damage and promotes migration of growth plate chondrocytes through RhoA/YAP pathway. Experimental Cell Research, 366(2), 81–91.

    CAS  PubMed  Article  Google Scholar 

  140. 140

    Zhou, N., Hu, N., Liao, J.-Y., Lin, L.-B., Zhao, C., Si, W.-K., Yang, Z., Yi, S.-X., Fan, T.-X., & Bao, W. (2015). HIF-1α as a regulator of BMP2-induced chondrogenic differentiation, osteogenic differentiation, and endochondral ossification in stem cells. Cellular Physiology and Biochemistry, 36(1), 44–60.

    PubMed  Article  CAS  Google Scholar 

  141. 141

    AlMuraikhi, N., Almasoud, N., Binhamdan, S., Younis, G., Ali, D., Manikandan, M., Vishnubalaji, R., Atteya, M., Siyal, A., & Alfayez, M. (2019) Hedgehog signaling inhibition by smoothened antagonist BMS-833923 reduces osteoblast differentiation and ectopic bone formation of human skeletal (mesenchymal) stem cells. Stem Cells International 2019, 3435901.

  142. 142

    Takebe, H., Shalehin, N., Hosoya, A., Shimo, T., & Irie, K. (2020). Sonic hedgehog regulates bone fracture healing. International Journal of Molecular Sciences, 21(2), 677.

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  143. 143

    Sun, J., Wei, X., Li, S., Sun, C., Wang, C., Li, P., Wei, D. L., & Wei, L. (2018). The effects of Indian hedgehog deletion on mesenchyme cells: Inducing intermediate cartilage scaffold ossification to cause growth plate and phalange joint absence, short limb, and dwarfish phenotypes. Stem Cells and Development, 27(20), 1412–1425.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  144. 144

    Deng, A., Zhang, H., Hu, M., Liu, S., Gao, Q., Wang, Y., & Guo, C. (2017). Knockdown of Indian hedgehog protein induces an inhibition of cell growth and differentiation in osteoblast MC3T3–E1 cells. Molecular Medicine Reports, 16(6), 7987–7992.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  145. 145

    Fischer, J., Ortel, M., Hagmann, S., Hoeflich, A., & Richter, W. (2016). Role of PTHrP (1-34) pulse frequency versus pulse duration to enhance mesenchymal stromal cell chondrogenesis. Journal of Cellular Physiology, 231(12), 2673–2681.

    CAS  PubMed  Article  Google Scholar 

  146. 146

    Diederichs, S., Tonnier, V., März, M., Dreher, S. I., Geisbüsch, A., & Richter, W. (2019). Regulation of WNT5A and WNT11 during MSC in vitro chondrogenesis: WNT inhibition lowers BMP and hedgehog activity, and reduces hypertrophy. Cellular and Molecular Life Sciences, 76(19), 3875–3889.

    CAS  PubMed  Article  Google Scholar 

  147. 147

    Törnqvist, A. E., Grahnemo, L., Nilsson, K. H., Funck-Brentano, T., Ohlsson, C., & Movérare-Skrtic, S. (2020) Wnt16 overexpression in osteoblasts increases the subchondral bone mass but has no impact on osteoarthritis in young adult female mice. Calcified Tissue International, 107(1):31-40.

  148. 148

    Öztürk, E., Despot-Slade, E., Pichler, M., & Zenobi-Wong, M. (2017). RhoA activation and nuclearization marks loss of chondrocyte phenotype in crosstalk with Wnt pathway. Experimental Cell Research, 360(2), 113–124.

    PubMed  Article  CAS  Google Scholar 

  149. 149

    Sherwood, J., Sambale, M., Bertrand, J., Dell’Accio, F., & Pap, T. (2018). Transient receptor potential cation channel (TRPC6) as a regulator of CXCR2-mediated articular cartilage homeostasis. Osteoarthritis and Cartilage, 26, S96–S97.

    Article  Google Scholar 

  150. 150

    Janune, D., Abd El Kader, T., Aoyama, E., Nishida, T., Tabata, Y., Kubota, S., & Takigawa, M. (2017). Novel role of CCN3 that maintains the differentiated phenotype of articular cartilage. Journal of Bone and Mineral Metabolism, 35(6), 582–597.

    CAS  PubMed  Article  Google Scholar 

  151. 151

    Zuo, C., Zhao, X., Shi, Y., Wu, W., Zhang, N., Xu, J., Wang, C., Hu, G., & Zhang, X. (2018). TNF-α inhibits SATB2 expression and osteoblast differentiation through NF-κB and MAPK pathways. Oncotarget, 9(4), 4833.

    PubMed  Article  Google Scholar 

  152. 152

    Yang, S., Guo, Y., Zhang, W., Zhang, J., Zhang, Y., & Xu, P. (2019). Effect of FGF-21 on implant bone defects through hepatocyte growth factor (HGF)-mediated PI3K/AKT signaling pathway. Biomedicine & Pharmacotherapy, 109, 1259–1267.

    CAS  Article  Google Scholar 

  153. 153

    Lin, C., Shao, Y., Zeng, C., Zhao, C., Fang, H., Wang, L., Pan, J., Liu, L., Qi, W., & Feng, X. (2018). Blocking PI3K/AKT signaling inhibits bone sclerosis in subchondral bone and attenuates post-traumatic osteoarthritis. Journal of Cellular Physiology, 233(8), 6135–6147.

    CAS  PubMed  Article  Google Scholar 

  154. 154

    Zhang, Q., Lai, S., Hou, X., Cao, W., Zhang, Y., & Zhang, Z. (2018). Protective effects of PI3K/Akt signal pathway induced cell autophagy in rat knee joint cartilage injury. American Journal of Translational Research, 10(3), 762.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. 155

    Shao, J., Zhou, Y., Lin, J., Nguyen, T. D., Huang, R., Gu, Y., Friis, T., Crawford, R., & Xiao, Y. (2018). Notch expressed by osteocytes plays a critical role in mineralisation. Journal of Molecular Medicine, 96(3–4), 333–347.

    CAS  PubMed  Article  Google Scholar 

  156. 156

    Ziouti, F., Ebert, R., Rummler, M., Krug, M., Müller-Deubert, S., Lüdemann, M., Jakob, F., Willie, B. M., & Jundt, F. (2019) NOTCH signaling is activated through mechanical strain in human bone marrow-derived mesenchymal stromal cells. Stem Cells International, 2019, 5150634.

  157. 157

    Steinmetz, N. J., Aisenbrey, E. A., Westbrook, K. K., Qi, H. J., & Bryant, S. J. (2015). Mechanical loading regulates human MSC differentiation in a multi-layer hydrogel for osteochondral tissue engineering. Acta Biomaterialia, 21, 142–153.

    CAS  PubMed  Article  Google Scholar 

  158. 158

    Grodzinsky, A. J., Levenston, M. E., Jin, M., & Frank, E. H. (2000). Cartilage tissue remodeling in response to mechanical forces. Annual Review of Biomedical Engineering, 2(1), 691–713.

    CAS  PubMed  Article  Google Scholar 

  159. 159

    Farooqi, A. R., Bader, R., & van Rienen, U. (2019). Numerical study on electromechanics in cartilage tissue with respect to its electrical properties. Tissue Engineering Part B: Reviews, 25(2), 152–166.

    CAS  Article  Google Scholar 

  160. 160

    Discher, D. (2010) Matrix elasticity directs stem cell lineage specification. Cell, 126(4):677-89

  161. 161

    Jiang, T., Kai, D., Liu, S., Huang, X., Heng, S., Zhao, J., Chan, B. Q. Y., Loh, X. J., Zhu, Y., & Mao, C. (2018). Mechanically cartilage-mimicking poly (PCL-PTHF urethane)/collagen nanofibers induce chondrogenesis by blocking NF–kappa B signaling pathway. Biomaterials, 178, 281–292.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  162. 162

    Stojkovska, J., Bugarski, B., & Obradovic, B. (2010). Evaluation of alginate hydrogels under in vivo–like bioreactor conditions for cartilage tissue engineering. Journal of Materials Science: Materials in Medicine, 21(10), 2869–2879.

    CAS  PubMed  Google Scholar 

  163. 163

    Huang, A. H., Baker, B. M., Ateshian, G. A., & Mauck, R. L. (2012). Sliding contact loading enhances the tensile properties of mesenchymal stem cell-seeded hydrogels. European Cells & Materials, 24, 29–45.

    Article  Google Scholar 

  164. 164

    Kon, E., Filardo, G., Brittberg, M., Busacca, M., Condello, V., Engebretsen, L., Marlovits, S., Niemeyer, P., Platzer, P., & Posthumus, M. (2018) A multilayer biomaterial for osteochondral regeneration shows superiority vs microfractures for the treatment of osteochondral lesions in a multicentre randomized trial at 2 years. Knee Surgery, Sports Traumatology, Arthroscopy, 26(9), 2704–2715.

Download references

Acknowledgements

Authors wish to thank the personnel of the Faculty of Advanced Medical Sciences for help and guidance.

Funding

This study was supported by a grant (IR.TBZMED.VCR.REC.1397.238) from Tabriz University of Medical Sciences.

Author information

Affiliations

Authors

Contributions

Sepideh Saghati, Keyvan Moharamzadeh, Ayla Hassani, Leila Roshangar, and Sonia Fathi collected data and reviewed the literature. Hamid Tayefi Nasrabadi, Ali Baradar Khoshfetrat, and Reza Rahbarghazi supervised the study.

Corresponding authors

Correspondence to Hamid Tayefi Nasrabadi or Ali Baradar Khoshfetrat or Reza Rahbarghazi.

Ethics declarations

Ethical Approval

Not applicable. 

Consent to Participate

Not applicable. 

Consent to Publish

Not applicable. 

Competing Interests

All authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saghati, S., Nasrabadi, H.T., Khoshfetrat, A.B. et al. Tissue Engineering Strategies to Increase Osteochondral Regeneration of Stem Cells; a Close Look at Different Modalities. Stem Cell Rev and Rep (2021). https://doi.org/10.1007/s12015-021-10130-0

Download citation

Keywords

  • Osteochondral repair
  • Physicochemical clues
  • Stem cells
  • Differentiation