The Altered Migration and Distribution of Systemically Administered Mesenchymal Stem Cells in Morphine-Treated Recipients


Mesenchymal stem cells (MSCs) have the ability to migrate to the site of injury or inflammation, and to contribute to the healing process. Since patients treated with MSCs are often users of analgesic drugs, to relieve their uncomfortable pain associated with the tissue disorder, there is a possibility of negative effects of these drugs on the migration of endogenous and exogenous MSCs. Therefore, we tested the impact of acute and chronic treatment with morphine on the migration and organ distribution of exogenous adipose tissue-derived MSCs in mouse models. Firstly, we showed that the incubation of MSCs with morphine significantly reduced the expression of adhesive molecules CD44 (HCAM), CD54 (ICAM-1) and CD106 (VCAM-1) on MSCs. Using a model of systemic administration of MSCs labeled with vital dye PKH26 and by the application of flow cytometry to detect living CD45PKH26+ cells, we found a decreased number of labeled MSCs in the lung, spleen and bone marrow, and a significantly increased number of MSCs in the liver of morphine-treated recipients. A skin allograft model was used to study the effects of morphine on the migration of exogenous MSCs to the superficial wound. Intraperitoneally administered MSCs migrated preferentially to the wound site, and this migration was significantly decreased in the morphine-treated recipients. The present results showed that morphine significantly influences the distribution of exogenous MSCs in the body, and decreases their migration to the site of injury.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability

The authors comfirm that all data and materials support the published claims and comply with field standards.


  1. 1.

    Sasaki, M., Abe, R., Fujita, Y., Ando, S., Inokuma, D., & Shimizu, H. (2008). Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. Journal of Immunology, 180, 2581–2587.

    CAS  Article  Google Scholar 

  2. 2.

    Lan, Y., Kodati, S., Lee, H. S., Omoto, M., Jin, Y., & Chauhan, S. K. (2012). Kinetics and function of mesenchymal stem cells in corneal injury. Investigative Ophthalmology and Visual Sciences, 53, 3638–3644.

    CAS  Article  Google Scholar 

  3. 3.

    Javorkova, E., Trosan, P., Zajicova, A., Krulova, M., Hajkova, M., & Holan, V. (2014). Modulation of the early inflammatory microenvironment in the alkali-burned eye by systemically administered interferon-γ-treated mesenchymal stromal cells. Stem Cells and Development, 23, 2490–2500.

    CAS  Article  Google Scholar 

  4. 4.

    Assis, A. C., Carvalho, J. L., Jacoby, B. A., Ferreira, R. L., Castanheira, P., Diniz, S. O., Cardoso, V. N., Goes, A. M., & Ferreira, A. J. (2010). Time-dependent migration of systemically delivered bone marrow mesenchymal stem cells to the infarcted heart. Cell Transplantation, 19, 219–230.

    Article  Google Scholar 

  5. 5.

    Wu, Y., & Zhao, R. C. (2012). The role of chemokines in mesenchymal stem cell homing to myocardium. Stem Cell Reviews and Reports, 8, 243–250.

    CAS  Article  Google Scholar 

  6. 6.

    Singh, A., Singh, A., & Sen, D. (2016). Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010–2015). Stem Cell Research and Therapy, 7(1), 82.

    Article  PubMed  Google Scholar 

  7. 7.

    Cardenes, N., Aranda-Valderrama, P., Carney, J. P., Sellares Torres, J., Alvarez, D., Kocydirim, E., Wolfram Smith, J. A., Ting, A. E., Lagazzi, L., Yu, Z., Mason, S., Santos, E., Lopresti, B. J., & Rojas, M. (2019). Cell therapy for ARDS: efficacy of endobronchial versus intravenous administration and biodistribution of MAPCs in a large animal model. BMJ Open Respiratory Research.

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Hajkova, M., Jaburek, F., Porubska, B., Bohacova, P., Holan, V., & Krulova, M. (2019). Cyclosporine A promotes the therapeutic effect of mesenchymal stem cells on transplantation reaction. Clinical Science (London), 133, 2143–2157.

    CAS  Article  Google Scholar 

  9. 9.

    Eggenhofer, E., Benseler, V., Kroemer, A., Popp, F. C., Geissler, E. K., Schlitt, H. J., Baan, C. C., Dahlke, M. H., & Hoogduijn, M. J. (2012). Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion. Frontiers in Immunology, 3, 297.

    CAS  Article  Google Scholar 

  10. 10.

    Leibacher, J., & Henschler, R. (2016). Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Research and Therapy, 7, 7.

  11. 11.

    Ji, J. F., He, B. P., Dheen, S. T., & Tay, S. S. (2004). Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brain after hypoglossal nerve injury. Stem Cells, 22, 415–427.

    CAS  Article  Google Scholar 

  12. 12.

    Chamberlain, G., Wright, K., Rot, A., Ashton, B., & Middleton, J. (2008). Murine mesenchymal stem cells exhibit a restricted repertoire of functional chemokine receptors: comparison with human. PLoS One, 3(8), e2934.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Rankin, S. M. (2012). Chemokines and adult bone marrow stem cells. Immunology Letters, 145, 47–54.

    CAS  Article  Google Scholar 

  14. 14.

    Nitzsche, F., Müller, C., Lukomska, B., Jolkkonen, J., Deten, A., & Boltze, J. (2017). Concise Review: MSC adhesion cascade-insights into homing and transendothelial migration. Stem Cells, 35, 1446–1460.

    Article  Google Scholar 

  15. 15.

    Abumaree, M., Al Jumah, M., Pace, R. A., & Kalionis, B. (2012). Immunosuppressive properties of mesenchymal stem cells. Stem Cell Reviews, 8, 375–392.

    CAS  Article  Google Scholar 

  16. 16.

    English, K. (2013). Mechanisms of mesenchymal stromal cell immunomodulation. Immunology and Cell Biology, 91, 19–26.

    CAS  Article  Google Scholar 

  17. 17.

    Holan, V., Hermankova, B., Bohacova, P., Kossl, J., Chudickova, M., Hajkova, M., Krulova, M., Zajicova, A., & Javorkova, E. (2016). Distinct immunoregulatory mechanisms in mesenchymal stem cells: Role of the cytokine environment. Stem Cell Reviews, 12, 654–663.

    CAS  Article  Google Scholar 

  18. 18.

    Bayer, R., Franke., H., Ficker, C., Richter, M., Lessig, R., Büttner, A., & Weber, M. (2015). Alterations of neuronal precursor cells in stages of human adult neurogenesis in heroin addicts. Drug and Alcohol Dependence, 156, 139–149.

    Article  Google Scholar 

  19. 19.

    Barlass, U., Dutta, R., Cheema, H., George, J., Sareen, A., Dixit, A., Yuan, Z., Giri, B., Meng, J., Banerjee, S., Banerjee, S., Dudeja, V., Dawra, R. K., Roy, S., & Saluja, A. K. (2017). Morphine worsens the severity and prevents pancreatic regeneration in mouse models of acute pancreatitis. Gut.

    Article  PubMed  Google Scholar 

  20. 20.

    Wang, Y., Gupta, M., Farooqui, M., Li, Y., Peng, F., Rao, S., Ansonoff, M., Pintar, J. E., & Gupta, K. (2017). Opioids and opioid receptors orchestrate wound repair. Translational Research, 185, 13–23.

    CAS  Article  Google Scholar 

  21. 21.

    Holan, V., Cechova, K., Zajicova, A., Kossl, J., Hermankova, B., Bohacova, P., Hajkova, M., Krulova, M., Svoboda, P., & Javorkova, E. (2018). The impact of morphine on the characteristics and function properties of human mesenchymal stem cells. Stem Cell Reviews and Reports, 14, 801–811.

    CAS  Article  Google Scholar 

  22. 22.

    Hajkova, M., Javorkova, E., Zajicova, A., Trosan, P., Holan, V., & Krulova, M. (2017). A local application of mesenchymal stem cells and cyclosporine A attenuates immune response by a switch in macrophage phenotype. Journal of Tissue Engineering and Regenerative. Medicine, 11, 1456–1465.

    CAS  Article  Google Scholar 

  23. 23.

    Billingham, R. E., Brent, L., Medawar, P. B., & Sparrow, E. M. (1954). Quantitative studies on tissue transplantation immunity. I. The survival times of skin homografts exchanged between members of different inbred strains of mice. Proceedings of the Royal Society of London B: Biological Sciences, 143, 43–58.

    CAS  PubMed  Google Scholar 

  24. 24.

    Rook, J. M., & McCarson, K. E. (2007). Delay of cutaneous wound closure by morphine via local blockade of peripheral tachykinin release. Biochemical Pharmacology, 74, 752–757.

    CAS  Article  Google Scholar 

  25. 25.

    Bortolotto, V., & Grilli, M. (2017). Opiate analgesics as negative modulators of adult hippocampal neurogenesis: Potential implications in clinical practice. Frontiers in Pharmacology.

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Lam, C. F., Chang, P. J., Huang, Y. S., et al. (2008). Prolonged use of high-dose morphine impairs angiogenesis and mobilization of endothelial progenitor cells in mice. Anesthesia and Analgesia, 107, 686–692.

    CAS  Article  Google Scholar 

  27. 27.

    Zhang, J., Huang, X., Wang, H., Liu, X., Zhang, T., Wang, Y., & Hu, D. (2015). The challenges and promises of allogeneic mesenchymal stem cells for use as a cell-based therapy. Stem Cell Research and Therapy, 6, 234.

    Article  Google Scholar 

  28. 28.

    Shim, G., Lee, S., Han, J., Kim, G., Jin, H., Miao, W., Yi, T. G., Cho, Y. K., Song, S. U., & Oh, Y. K. (2015). Pharmacokinetics and in vivo fate of intra-articularly transplanted human bone marrow-derived clonal mesenchymal stem cells. Stem Cells and Development, 24, 1124–1132.

    CAS  Article  Google Scholar 

  29. 29.

    Herrera, M. B., Bussolati, B., Bruno, S., Morando, L., Mauriello-Romanazzi, G., Sanavio, F., Stamenkovic, I., Biancone, L., & Camussi, G. (2007). Exogenous mesenchymal stem cells localize to the kidney by means of CD44 following acute tubular injury. Kidney International, 72, 430–441.

    CAS  Article  Google Scholar 

  30. 30.

    Wagner, W., Ho, A. D., & Zenke, M. (2010). Different facets of aging in human mesenchymal stem cells. Tissue Engineering Part B Reviews, 16, 445–453.

    Article  Google Scholar 

  31. 31.

    Rombouts, W. J., & Ploemacher, R. E. (2003). Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia, 17, 160–170.

    CAS  Article  Google Scholar 

  32. 32.

    Liu, X. B., Chen, H., Chen, H. Q., Zhu, M. F., Hu, X. Y., Wang, Y. P., Jiang, Z., Xu, Y. C., Xiang, M. X., & Wang, J. A. (2012). Angiopoietin-1 preconditioning enhances survival and functional recovery of mesenchymal stem cell transplantation. Journal of Zhejiang University - Science B, 13, 616–623.

    CAS  Article  Google Scholar 

  33. 33.

    Rook, J. M., Hasan, W., & McCarson, K. E. (2009). Morphine-induced early delays in wound closure: involvement of sensory neuropeptides and modification of neurokinin receptor expression. Biochemical Pharmacology, 77, 1747–1755.

    CAS  Article  Google Scholar 

  34. 34.

    Chrastil, J., Sampson, C., Jones, K. B., & Higgins, T. F. (2013). Postoperative opioid administration inhibits bone healing in an animal model. Clinical Orthopaedics and Related Research, 471, 4076–4081.

    Article  Google Scholar 

Download references


This work was supported by the project No. LTAUSA18110 – Inter-Excellence from the Ministry of Education, Youth and Sports of the Czech Republic, grant No. 19-02290S from the Grant Agency of the Czech Republic, project RVO:6798523 from the Institute of Physiology and by the Charles University programs SVV 260435 and 20604315 PROGRES Q43.

Author information




All authors contributed to this study. VH and PS designed the study, VH, BE, KP, AZ, JK, PB and JB performed the experiments, VH and PS wrote the paper, all authors read and approved the final manuscript.

Corresponding author

Correspondence to Vladimir Holan.

Ethics declarations

Human and Animal Rights

This study did not involve human participants. The experiments with animals were approved by the local Animal Ethics Committee of the Institute of Experimental Medicine of the Czech Academy of Sciences, Prague.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Holan, V., Echalar, B., Palacka, K. et al. The Altered Migration and Distribution of Systemically Administered Mesenchymal Stem Cells in Morphine-Treated Recipients. Stem Cell Rev and Rep (2021).

Download citation


  • Mesenchymal stem cells
  • Acute and chronic morphine treatment
  • Adhesive molecules
  • Cell migration
  • Skin graft model