Skip to main content

Advertisement

Log in

A Retrospective Analysis of Safety and Efficacy of Wharton’s Jelly Stem Cell Administration in Children with Spina Bifida

  • Original Article
  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The aim of this paper was to describe the outcome of therapeutic administration of mesenchymal stem cells (MSC) obtained from Wharton’s jelly (WJ-MSCs) in paediatric patients with spina bifida (SB) during a medical therapeutic experiment. We retrospectively analysed the records of twenty-eight patients aged 1–18 years (median age 4 years) recruited in daily clinical practice. Each patient received 0.9–5.0 × 106 WJ-MSCs/kg (median 2.6 × 106 WJ-MSCs/kg) administered in 1–5 injections as an experimental treatment for SB (allogenic administration). All the patients were examined by the same neurologist (study investigator, SI) on the day of each infusion. Based on the neurological examination, the SI used a six-point Likert scale to assess the quality of life and self-service of each patient. Twenty-six follow-up observations after MSC administration were analysed retrospectively. In addition, the assessments of the parents and other healthcare professionals were obtained for 5 patients and compared with the SI’s assessment. Twenty-one of 26 patients (81%) experienced some improvement in their health status. Twenty-one (81%) patients experienced increased quality of life (median 2.0) and 10 patients (38%) achieved a slight increase in their self-service level (median 1). Improvement was achieved in 12 out of 17 areas. Five were significant in low-power sign test: muscle tension, muscle strength, gross motor development, micturition/defecation control, and cognitive functions. Adverse events were mild and temporary. Age, body mass, single dose or poor response after the first administration were not significant predictors of later response to treatment in contrast to the total cell dose per one kg in the whole treatment course. WJ-MSC administration is a safe and effective procedure that improves motor functions, micturition/defecation control, and cognitive functions, and improves the quality of life in children with SB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mulinare, J., Cordero, J. F., Erickson, J. D., & Berry, R. J. (1988). Periconceptional use of multivitamins and the occurrence of neural tube defects. JAMA, 260(21), 3141–3145.

    Article  CAS  PubMed  Google Scholar 

  2. Atta, C. A. M., Fiest, K. M., Frolkis, A. D., Jette, N., Pringsheim, T., St Germaine-Smith, C., et al. (2016). Global birth prevalence of spina bifida by folic acid fortification status: A systematic review and meta-analysis. American Journal of Public Health, 106(1), e24–e34.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zieba, J., Miller, A., Gordiienko, O., Smith, G. M., & Krynska, B. (2017). Clusters of amniotic fluid cells and their associated early neuroepithelial markers in experimental myelomeningocele: Correlation with astrogliosis. PLoS One, 12(3), e0174625.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Marotta, M., Fernández-Martín, A., Oria, M., Fontecha, C. G., Giné, C., Martínez-Ibáñez, V., et al. (2017). Isolation, characterization, and differentiation of multipotent neural progenitor cells from human cerebrospinal fluid in fetal cystic myelomeningocele. Stem Cell Research, 22, 33–42.

    Article  CAS  PubMed  Google Scholar 

  5. Baraniak, P. R., & McDevitt, T. C. (2010). Stem cell paracrine actions and tissue regeneration. Regenerative Medicine, 5, 121–143.

    Article  PubMed  Google Scholar 

  6. Jiao, Y., Li, X., & Liu, J. (2018). A new approach to cerebral palsy treatment: Discussion of the effective components of umbilical cord blood and its mechanisms of action. Cell Transplantation, 1, 096368971880965. https://doi.org/10.1177/0963689718809658.

    Article  Google Scholar 

  7. Riazifar, M., Mohammadi, M. R., Pone, E. J., Yeri, A., Lässer, C., Segaliny, A. I., et al. (2019). Stem cell-derived exosomes as Nanotherapeutics for autoimmune and neurodegenerative disorders. ACS Nano. 2019 may 29. https://doi.org/10.1021/acsnano.9b01004.

  8. Drommelschmidt, K., Serdar, M., Bendix, I., Herz, J., Bertling, F., Prager, S., et al. (2017). Mesenchymal stem cell-derived extracellular vesicles ameliorate inflammation-induced preterm brain injury. Brain Beh. Immun., 60, 220–232.

    Article  CAS  Google Scholar 

  9. Kim, D., Nishida, H., An, S. Y., Shetty, A. K., Bartosh, T. J., & Prockop, D. J. (2016). Chromatographically isolated CD63+ CD81+ extracellular vesicles from mesenchymal stromal cells rescue cognitive impairments after TBI. Proceedings of the National Academy of Sciences of the United States of America, 113, 170–175.

    Article  CAS  PubMed  Google Scholar 

  10. Xin, H., Katakowski, M., Wang, F., Yang, J. J., Zhang, Z. G., & Chopp, M. (2013). Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J. Cer. Blood Flow Met., 33, 1711–1715.

    Article  CAS  Google Scholar 

  11. Jarmalaviciute, A., Tunaitis, V., Pivoraite, U., Venalis, A., & Pivoriunas, A. (2015). Exosomes from dental pulp stem cells rescue human dopaminergic neurons from 6-hydroxy-dopamine–induced apoptosis. Cytotherapy, 17, 932–939.

    Article  CAS  PubMed  Google Scholar 

  12. Katsuda, T., Tsuchiya, R., Kosaka, N., Yoshioka, Y., Takagaki, K., Oki, K., et al. (2013). Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes. Scientific Reports, 3, 1197.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Perets, N., Hertz, S., London, M., & Oen, D. (2018). Intranasal administration of exosomes derived from mesenchymal stem cells ameliorates autistic-like behaviors of BTBR mice. Mol. Autism, 9, 57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Osier, N., Motamedi, V., Edwards, K., Puccio, A., Diaz-Arrastia, R., Kenney, K., & Gill, J. (2018). Exosomes in acquired neurological disorders: New insights into pathophysiology and treatment. Molecular Neurobiology, 55, 9280–9293.

    Article  CAS  PubMed  Google Scholar 

  15. Kordelas, L., Rebmann, V., Ludwig, A.-K., Radtke, S., Ruesing, J., Doeppner, T. R., et al. (2014). MSC-derived exosomes: A novel tool to treat therapy-refractory graft-versus-host disease. Leukemia, 28, 970–973.

    Article  CAS  PubMed  Google Scholar 

  16. Nassar, W., El-Ansary, M., Sabry, D., Mostafa, M. A., Fayad, T., Kotb, E., et al. (2016). Umbilical cord mesenchymal stem cells derived extracellular vesicles can safely ameliorate the progression of chronic kidney diseases. Biomater. Res., 20, 21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Wiklander, O. P. B., Brennan, M. Á., Lötvall, J., Breakefield, X. O., & El Andaloussi, S. (2019). Advances in therapeutic applications of extracellular vesicles. Sci Transl Med, 11(492).

  18. Sharma, A. K., Bury, M. I., Fuller, N. J., Marks, A. J., Kollhoff, D. M., Rao, M. V., et al. (2013). Cotransplantation with specific populations of spina bifida bone marrow stem/progenitor cells enhances urinary bladder regeneration. Proceedings of National Acadademy of Sciences USA, 110(10), 4003–4008.

    Article  CAS  Google Scholar 

  19. Sahoo, S., Klychko, E., Thorne, T., Misener, S., Schultz, K. M., Millay, M., et al. (2011). Exosomes from human CD34+ stem cells mediate their proangiogenic paracrine activity. Circulation Research, 109(7), 724–728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Losordo, D. W., Henry, T. D., Davidson, C., Sup Lee, J., Costa, M. A., Bass, T., et al. (2011). Intramyocardial, autologous CD34+ cell therapy for refractory angina. Circulation Research, 109(4), 428–436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Steidl, U., Bork, S., Schaub, S., Selbach, O., Seres, J., Aivado, M., et al. (2004). Primary human CD34+ hematopoietic stem and progenitor cells express functionally active receptors of neuromediators. Blood, 104(1), 81–88.

    Article  CAS  PubMed  Google Scholar 

  22. Li, X., Yuan, Z., Wei, X., Li, H., Zhao, G., Miao, J., et al. (2016). Application potential of bone marrow mesenchymal stem cell (BMSCs) based tissue-engineering for spinal cord defect repair in rat fetuses with spina bifida aperta. The Journal of Materials Science: Materials in Medicine, 27(4), 77.

    Google Scholar 

  23. Joseph, D. B., Borer, J. G., De Filippo, R. E., Hodges, S. J., & McLorie, G. A. (2014). Autologous cell seeded biodegradable scaffold for augmentation Cystoplasty: Phase II study in children and adolescents with spina bifida. The Journal of Urology, 191(5), 1389–1395.

    Article  CAS  PubMed  Google Scholar 

  24. Donders, R., Bogie, J. F. J., Ravanidis, S., Gervois, P., Vanheusden, M., Marée, R., et al. (2018). Human Wharton's jelly-derived stem cells display a distinct immunomodulatory and Proregenerative transcriptional signature compared to bone marrow-derived stem cells. Stem Cells and Development, Jan 15, 27(2), 65–84.

    Article  CAS  Google Scholar 

  25. Weiss, M., Medicetty, S., Bledsoe, A. R., Rachakatla, R. S., Choi, M., Merchav, S., et al. (2006). Human umbilical cord matrix stem cells: Preliminary characterization and effect of transplantation in a rodent model of Parkinson disease. Stem Cells, 24, 781–792.

    Article  CAS  PubMed  Google Scholar 

  26. Mitchell, K. E., Weiss, M. L., Mitchell, B. M., Martin, P., Davis, D., Morales, L., et al. (2003). Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells, 21, 50–60.

    Article  CAS  PubMed  Google Scholar 

  27. Boruczkowski, D., & Zdolińska-Malinowska, I. (2019). Wharton’s jelly mesenchymal stem cell administration improves quality of life and self-sufficiency in children with cerebral palsy: Results from a retrospective study. Stem Cells International ID: 7402151.

  28. Muraglia, A., Cancedda, R., & Quarto, R. (2000). Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. Journal of Cell Science, 113(7), 1161–1166.

    CAS  PubMed  Google Scholar 

  29. Galdersi, U., & Giordano, A. (2014). The gap between the physiological and therapeutic roles of mesenchymal stem cells. Medicinal Research Reviews, 34(5), 1100–1126.

    Article  CAS  Google Scholar 

  30. Squillaro, T., Peluso, G., & Galdersi, U. (2016). Clinical trials with mesenchymal stem cells: an update. Cell Transplantation, 25(5), 829–848.

    Article  PubMed  Google Scholar 

  31. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317.

    Article  CAS  PubMed  Google Scholar 

  32. Wang, Q., Yang, Q., Wang, Z., Tong, H., Ma, L., Zhang, Y., et al. (2016). Comparative analysis of human mesenchymal stem cells from fetal-bone marrow, adipose tissue, and Warton's jelly as sources of cell immunomodulatory therapy. Human Vaccines & Immunotherapeutics, 12(1), 85–96.

    Article  Google Scholar 

  33. Drela, K., Lech, W., Figiel-Dabrowska, A., Zychowicz, M., Mikula, M., Sarnowska, A., et al. (2016). Enhanced neuro-therapeutic potential of Wharton's jelly-derived mesenchymal stem cells in comparison with bone marrow mesenchymal stem cells culture. Cytotherapy, 18(4), 497–509.

    Article  CAS  PubMed  Google Scholar 

  34. Hsieh, J. Y., Wang, H. W., Chang, S. J., Liao, K. H., Lee, I. H., Lin, W. S., et al. (2013). Mesenchymal stem cells from human umbilical cord express preferentially secreted factors related to neuroprotection, neurogenesis, and angiogenesis. PLoS One, 8(8), e72604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Munir, H., Luu, N.-T., Clarke, L. S. C., Nash, G. B., & McGettrick, H. M. (2016). Comparative ability of mesenchymal stromal cells from different tissues to limit neutrophil recruitment to inflamed endothelium. PLoS One, 11(5), e0155161.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Iannaccone, P. M., Galat, V., Bury, M. I., Ma, Y. C., & Sharma, A. K. (2018). The utility of stem cells in pediatric urinary bladder regeneration. Pediatric Research, 83, 258–266.

    Article  CAS  PubMed  Google Scholar 

  37. Sharma, A. K., Fuller, N. J., Sullivan, R. R., Fulton, N., Hota, P. V., Harrington, D. A., et al. (2009). Defined populations of bone marrow derived mesenchymal stem and endothelial progenitor cells for bladder regeneration. Journal of Urology, 182(4), 1898–1905.

    Article  Google Scholar 

  38. Sharma, A. K., Hota, P. V., Matoka, D. J., Fuller, N. J., Jandali, D., Thaker, H., et al. (2010). Urinary bladder smooth muscle regeneration utilizing bone marrow derived mesenchymal stem cell seeded elastomeric poly(1,8-octanediol-co-citrate) based thin films. Biomaterials, 31(24), 6207–6217.

    Article  CAS  PubMed  Google Scholar 

  39. Ferrari, G. (1998). Muscle regeneration by bone marrow-derived myogenic progenitors. Science, 279(5356), 1528–1530.

    Article  CAS  PubMed  Google Scholar 

  40. Mafi, R. (2001). Sources of adult mesenchymal stem cells applicable for musculoskeletal applications - a systematic review of the literature. The Open Orthopaedics Journal, 5(1), 242–248.

    Article  Google Scholar 

  41. Sharma, A., Sane, H., Badhe, P., Gokulchandran, N., Kulkarni, P., Lohiya, M., et al. (2013). A clinical study shows safety and efficacy of autologous bone marrow mononuclear cell therapy to improve quality of life in muscular dystrophy patients. Cell Transplantation, 22(1_suppl), 127–138.

    Article  Google Scholar 

  42. Li, P., Cui, K. A. I., Zhang, B. O., Wang, Z., Shen, Y., Wang, X., et al. (2015). Transplantation of human umbilical cord-derived mesenchymal stems cells for the treatment of Becker muscular dystrophy in affected pedigree members. International Journal of Molecular Medicine, 35(4), 1051–1057.

    Article  CAS  PubMed  Google Scholar 

  43. Sharma, A., Gokulchandran, N., Chopra, G., Kulkarni, P., Lohia, M., Badhe, P., et al. (2012). Administration of Autologous Bone Marrow-Derived Mononuclear Cells in children with incurable neurological disorders and injury is safe and improves their quality of life. Cell Transplantation, 21(1), S79–S90.

    Article  PubMed  Google Scholar 

  44. Liem, N. T., Chinh, V. D., Thinh, N. T., Minh, N. D., & Duc, H. M. (2018). Improved bowel function in patients with spina bifida after bone marrow-derived mononuclear cell transplantation: A report of 2 cases. American Journal of Case Reports, 19, 1010–1018.

    Article  Google Scholar 

  45. Salehi-Pourmehr, H., Rahbarghazi, R., Mahmoudi, J., Roshangar, L., Chapple, C. R., Hajebrahimi, S., et al. (2019). Intra-bladder wall transplantation of bone marrow mesenchymal stem cells improved urinary bladder dysfunction following spinal cord injury. Life Sciences, 221, 20–28.

  46. Shandley, S., Wolf, E. G., Schubert-Kappan, C. M., Baugh, L. M., Richards, M. F., Prye, J., et al. (2017). Increased circulating stem cells and better cognitive performance in traumatic brain injury subjects following hyperbaric oxygen therapy. Undersea and Hyperbaric Medicine, 44(3), 257–269.

    Article  PubMed  Google Scholar 

  47. Acharya, M. M., Martirosian, V., Chmielewski, N. N., Hanna, N., Tran, K. K., Liao, A. C., et al. (2015). Stem cell transplantation reverses chemotherapy-induced cognitive dysfunction. Cancer Research, 75(4), 676–686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Acharya, M. M., Christie, L.-A., Hazel, T. G., Johe, K. K., & Limoli, C. L. (2014). Transplantation of human fetal-derived neural stem cells improves cognitive function following cranial irradiation. Cell Transplantation, 23(10), 1255–1266.

    Article  PubMed  Google Scholar 

  49. Ozdemir, M., Attar, A., Kuzu, I., Ayten, M., Ozgencil, E., Bozkurt, M., et al. (2012). Stem cell therapy in spinal cord injury: In vivo and postmortem tracking of bone marrow mononuclear or mesenchymal stem cells. Stem Cell Reviews and Reports, 8(3), 953–962.

    Article  CAS  PubMed  Google Scholar 

  50. Mishra, S. K., Khushu, S., Singh, A. K., & Gangenahalli, G. (2018). Homing and tracking of Iron oxide labelled mesenchymal stem cells after infusion in traumatic brain injury mice: A longitudinal in vivo MRI study. Stem Cell Reviews and Reports, Dec, 14(6), 888–900.

    Article  CAS  Google Scholar 

  51. McMahill, B. G., Borjesson, D. L., Sieber-Blum, M., Nolta, J. A., & Sturges, B. K. (2015). Stem cells in canine spinal cord injury – Promise for regenerative therapy in a large animal model of human disease. Stem Cell Reviews and Reports, Feb, 11(1), 180–193.

    Article  CAS  Google Scholar 

  52. Callera, F., & do Dascimento, R. X. (2006). Delivery of autologous bone marrow precursor cells into spinal cord via lumbar puncture technique in patients with spinal cord injury: A preliminary safety study. Experimental Hematology, 34(2), 130–131.

    Article  PubMed  Google Scholar 

  53. Shieh, H. F., Ahmed, A., Rohrer, L., Zurakowski, D., & Fauza, D. O. (2018). Donor mesenchymal stem cell linetics after transamniotic stem cell therapy (TRASCET) for experimental spina bifida. Journal of Pediatric Surgery, 53(6), 1134–1136.

    Article  PubMed  Google Scholar 

  54. He, L., & Zhang, H. (2019). MicroRNAs in the migration of mesenchymal stem cells. Stem Cell Reviews and Reports, 15(1), 3–12.

    Article  CAS  PubMed  Google Scholar 

  55. Shieh, H. F., Tracy, S. A., Hong, C. R., Chalphin, A. V., Ahmed, A., Rohrer, L., et al. (2018). Transamniotic stem cell therapy (TRASCET) in a rabbit model of spina bifida. Journal of Pediatric Surgery, S0022-3468(18), 30746–30742.

    Google Scholar 

  56. Vandervelde, S., van Luyn, M. J., Tio, R. A., & Harmsen, M. C. (2005). Signaling factors in stem cell mediated repair of infarcted myocardium. Journal of Molecular Cellular Cardiology, 39(2), 363–376.

    Article  CAS  PubMed  Google Scholar 

  57. Gu, W., Zhang, F., Xue, Q., et al. (2010). Transplantation of bone marrow mesenchymal stem cells reduces lesion volume and induces axonal regrowth of injured spinal cord. Neuropathology, 30, 205–217.

    Article  PubMed  Google Scholar 

  58. Sanchez, V., Villalba, N., Fiore, L., Luzzani, C., Miriuka, S., Boveris, S., et al. (2017). Characterization of tunneling nanotubes in Wharton’s jelly mesenchymal stem cells. An intercellular exchange of components between neighboring cells. Stem Cell Reviews and Reports, 13, 491–498.

    Article  CAS  PubMed  Google Scholar 

  59. Zhan, J., He, J., Chen, M., Ma, Z., Lu, P., & Yu, B. (2018). Fasudil promotes BMSC migration via activating the MAPK signaling pathway and application in a model of spinal cord injury. Stem Cells International, 2018, 9793845.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Li, F., Xia, W., Yuan, S., & Sun, R. (2009). Acute inhibition of rho-kinase attenuates pulmonary hypertension in patients with congenital heart disease. Pediatric Cardiology, 30, 363–366.

    Article  PubMed  Google Scholar 

  61. Meziane, H., Khelfaoui, M., Morello, N., Hiba, B., Calcagno, E., Reibel-Foisset, S., et al. (2016). Fasudil treatment in adult reverses behavioural changes and brain ventricular enlargement in Oligophrenin-1 mouse model of intellectual disability. Human Molecular Genetics, 25(11), 2314–2323.

    Article  CAS  PubMed  Google Scholar 

  62. Petterson, B., Bourke, J., Leonard, H., Jacoby, P., & Bower, C. (2007). Co-occurrence of birth defects and intellectual disability. Paediatric Perinatal Epidemiology, Jan, 21(1), 65–75.

    Article  Google Scholar 

  63. Jacob, S. W., & de la Torre, J. C. (2009). Pharmacology of dimethyl sulfoxide in cardiac and CNS damage. Pharmacological Reports, 61, 225–235.

    Article  CAS  PubMed  Google Scholar 

  64. Karaça, M., Kiliç, E., Yazici, B., Demir, S., & de la Torre, J. (2002). Ischemic stroke in elderly patients treated with a free radical scavenger–glycolytic intermediate solution: A preliminary pilot trial. Neurological Research, 24, 73–80.

    Article  PubMed  Google Scholar 

  65. Syme, R., Bewick, M., Stewart, D., Porter, K., Chadderton, T., & Glück, S. (2004). The role of depletion of dimethyl sulfoxide before autografting: On hematologic recovery, side effects, and toxicity. Biology of Blood and Marrow Transplantation, 10, 135–141.

    Article  CAS  PubMed  Google Scholar 

  66. Akkök, C. A., Holte, M. R., Tangen, J. M., Ostenstad, B., & Bruserud, O. (2009). Hematopoietic engraftment of dimethyl sulfoxide-depleted autologous peripheral blood progenitor cells. Transfusion, 49, 354–361.

    Article  PubMed  Google Scholar 

  67. Junior, A. M., Arrais, C. A., Saboya, R., Velasques, R. D., Junqueira, P. L., & Dulley, F. L. (2008). Neurotoxicity associated with dimethylsulfoxide-preserved hematopoietic progenitor cell infusion. Bone and Marrow Transplantation, 41, 95–96.

    Article  CAS  Google Scholar 

  68. Mueller, L. P., Theurich, S., Christopeit, M., Grothe, W., Muetherig, A., Weber, T., et al. (2007). Neurotoxicity upon infusion of dimethylsulfoxide-cryopreserved peripheral blood stem cells in patients with and without pre-existing cerebral disease. European Journal of Haematology, 78, 527–531.

    Article  CAS  PubMed  Google Scholar 

  69. Windrum, P., & Morris, T. C. M. (2003). Severe neurotoxicity because of dimethyl sulphoxide following peripheral blood stem cell transplantation. Bone and Marrow Transplantation, 31, 315.

    Article  CAS  Google Scholar 

  70. Hanslick, J. L., Lau, K., Noguchi, K. K., Olney, J. W., Zorumski, C. F., Mennerick, S., & Farber, N. B. (2009). Dimethyl sulfoxide (DMSO) produces widespread apoptosis in the developing central nervous system. Neurobiology of Disease, 34, 1–10.

    Article  CAS  PubMed  Google Scholar 

  71. Abdelkefi, A., Lakhal, A., Moojat, N., Ben Hamed, L., Fekih, J., Ladeb, S., et al. (2009). Severe neurotoxicity associated with dimethyl sulphoxide following PBSCT. Bone and Marrow Transplantation, 44, 323–324.

    Article  CAS  Google Scholar 

  72. Gonzalez-Lopez, T. J., Sanchez-Guijo, F. M., Ortın, A., Crusoe, E., Cordoba, I., Corral, M., et al. (2011). Ischemic stroke associated with the infusion of DMSO-cryopreserved auto-PBSCs. Bone and Marrow Transplantation, 46, 1035–1036.

    Article  CAS  Google Scholar 

  73. Schroeder, T., Fenk, R., Saure, C., Czibere, A., Bruns, I., Zohren, F., et al. (2011). The Mexican way: A feasible approach to avoid DMSO toxicity. Bone an Marrow Transplantation, 46, 469–471.

    Article  CAS  Google Scholar 

  74. Cho, P. S., Messina, D. J., Hirsh, E. L., Chi, N., Goldman, S. N., Lo, D., et al. (2008). Sachs and Christene A. Huang. Immunogenicity of umbilical cord tissue–derived cells. Blood, 111, 430–438.

    CAS  PubMed  Google Scholar 

  75. Ren, G., Zhang, L., Zhao, X., Xu, G., Zhang, Y., Roberts, A. I., et al. (2008). Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell, 2, 141–150.

    Article  CAS  PubMed  Google Scholar 

  76. Ren, G., Su, J., Zhang, L., Zhao, X., Ling, W., L'Huillie, A., et al. (2009). Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression. Stem Cells, 27, 1954–1962.

    Article  CAS  PubMed  Google Scholar 

  77. Shi, Y., Hu, G., Su, J., Li, W., Chen, Q., Shou, C., et al. (2010). Mesenchymal stem cells: A new strategy for immunosuppression and tissue repair. Cell Research, 20, 510–518.

    Article  CAS  PubMed  Google Scholar 

  78. Su, J., Chen, X., Huang, Y., Li, W., Li, J., Cao, K., et al. (2014). Phylogenetic distinction of iNOS and IDO function in mesenchymal stem cell-mediated immunosuppression in mammalian species. Cell Death and Differention, 21, 388–396.

    Article  CAS  Google Scholar 

  79. Almeida-Porada, G. D., Hoffman, R., Manalo, P., Gianni, A. M., & Zanjani, E. D. (1996). Detection of human cells in human/sheep chimeric lambs with in vitro human stroma-forming potential. Experimental Hematology, 24, 482–487.

    CAS  PubMed  Google Scholar 

  80. Liechty, K. W., MacKenzie, T. C., Shaaban, A. F., Radu, A., Moseley, A. M., Deans, R., et al. (2000). Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nature Medicine, 6, 1282–1286.

    Article  CAS  PubMed  Google Scholar 

  81. Mackenzie, T. C., & Flake, A. W. (2001). Multilineage differentiation of human MSC after in utero transplantation. Cytotherapy, 3, 403–405.

    Article  CAS  PubMed  Google Scholar 

  82. Almeida-Porada, G., El Shabrawy, D., Porada, C., & Zanjani, E. D. (2002). Differentiative potential of human metanephric mesenchymal cells. Experimental Hematology, 30, 1454–1462.

    Article  CAS  PubMed  Google Scholar 

  83. Snowise, S., Mann, L., Morales, Y., Moise, K. J., Jr., Johnson, A., Fletcher, S., et al. (2017). Cryopreserved human umbilical cord versus biocellulose film for prenatal spina bifida repair in a physiologic rat model. Prenatal Diagnosis, 37(5), 473–481.

    Article  CAS  PubMed  Google Scholar 

  84. Wang, A., Brown, E. G., Lankford, L., Keller, B. A., Pivetti, C. D., Sitkin, N. A., et al. (2015). Placental mesenchymal stromal cells rescue ambulation in ovine myelomeningocele. Stem Cells Translational Medicine, 4(6), 659–669.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Mackenzie, T. C., Shaaban, A. F., Radu, A., & Flake, A. W. (2002). Engraftment of bone marrow and fetal liver cells after in utero transplantation in MDX mice. Jorunal of Pediatric Surgery, 37, 1058–1064.

    Article  Google Scholar 

  86. Fauza, D. O. (2018). Transamniotic stem cell therapy: A novel strategy for the prenatal management of congenital anomalies. Pediatric Research, 83(1–2), 241–248.

    Article  CAS  PubMed  Google Scholar 

  87. Fauza, D. O. (2017). Regenerative medicine and spina bifida: Recent developments in induced fetal regeneration. Issue title: Spina Bifida. Guest editors: Timothy Brei and Amy Houtrow. Journal of Pediatric Rehabilitation Medicine, 10(3–4), 185–188.

    Article  PubMed  Google Scholar 

  88. Boruczkowski, D., Pujal, J.-M., & Zdolińska-Malinowska, I. (2019). Autologous cord blood in children with cerebral palsy: A review. International Journal of Molecular Sciences, 20(10), 2433.

    Article  PubMed Central  Google Scholar 

  89. Ferreira-Silva, V., Primo, F. L., Baqui, M. M., et al. (2018). The impact of morphine on the characteristics and function properties of human mesenchymal stem cells. Stem Cell Rev and Rep, 14, 585.

    Article  CAS  PubMed  Google Scholar 

  90. Holan, V., Cechova, K., Zajicova, A., et al. (2018). Beneficial role of low-intensity laser irradiation on neural β-tubulin III protein expression in human bone marrow multipotent mesenchymal stromal cells. Stem Cell Rev and Rep, 14, 801.

    Article  CAS  PubMed  Google Scholar 

  91. Long, C., Lankford, L., & Wang, A. (2019). Stem cell-based in utero therapies for spina bifida: Implications for neural regeneration. Neural Regeneration Research, 14(2), 260–261.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Magdalena Chrościńska-Krawczyk from the Department of Paediatric Neurology, Lublin Medical University, Lublin, Poland, for the qualification of patients, supervision during the therapy and medical examination during follow-ups. They also wish to thank Tomasz Ołdak from the Laboratory at Polski Bank Komórek Macierzystych S.A. (FamiCord Group), Warsaw, Poland, for his supervision during the preparation of Wharton’s jelly-derived mesenchymal stem cells. The collection of biological material was carried out as part of the commercial services provided by Polski Bank Komórek Macierzystych S.A., with the participation of medical staff from public hospitals and employees of Polski Bank Komórek Macierzystych S.A. Language assistance was provided by Marisa Granados.

Funding

The study was sponsored by Polski Bank Komórek Macierzystych S.A. (FamiCord Group), Warsaw, Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariusz Boruczkowski.

Ethics declarations

Conflict of Interest

Both authors are employees of Polski Bank Komórek Macierzystych S.A. (FamiCord Group), Warsaw, Poland.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boruczkowski, D., Zdolińska-Malinowska, I. A Retrospective Analysis of Safety and Efficacy of Wharton’s Jelly Stem Cell Administration in Children with Spina Bifida. Stem Cell Rev and Rep 15, 717–729 (2019). https://doi.org/10.1007/s12015-019-09902-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-019-09902-6

Keywords

Navigation