Skip to main content

Advertisement

Log in

Integrative Analysis of CD133 mRNA in Human Cancers Based on Data Mining

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

CD133 is a wildly used cancer stem cell marker. The purpose of this study was to explore the significance of CD133 mRNA in human cancers mainly based on The Cancer Genome Atlas (TCGA) database. Bioinformatic analyses were done by using public repositories, including BioGPS, SAGE Genie tools, Oncomine analysis, Regulome Explorer, COSMIC analysis, and Kaplan-Meier Plotter. The main findings in this study were: 1) High CD133 mRNA was correlated with a benign survival rate of gastric cancer and lung cancer; 2) Transmembrane protein 125 (TMEM125) in bladder urothelial carcinoma and intercellular adhesion molecule 2 (ICAM2) in ovarian serous cystadenocarcinoma were closely related to CD133 expression; 3) The location and the topological structure of CD133 protein were not determined by its transcript variant in cancer cells; 4) CD38 and CD200 may be used as novel surface markers for solid cancers. However, the mechanism of these findings is not completely clear, further studies have to be performed in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gutman, D. A., Cobb, J., Somanna, D., Park, Y., Wang, F., Kurc, T., et al. (2013). Cancer digital slide archive: An informatics resource to support integrated in silico analysis of TCGA pathology data. Journal of the American Medical Informatics Association, 20, 1091–1098.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Joshi, A., De Smet, R., Marchal, K., Van de Peer, Y., & Michoel, T. (2009). Module networks revisited: Computational assessment and prioritization of model predictions. Bioinformatics, 25, 490–496.

    Article  CAS  PubMed  Google Scholar 

  3. Gonzalez, G. H., Tahsin, T., Goodale, B. C., Greene, A. C., & Greene, C. S. (2016). Recent advances and emerging applications in text and data Mining for Biomedical Discovery. Briefings in Bioinformatics, 17, 33–42.

    Article  PubMed  Google Scholar 

  4. Siegel, R. L., Miller, K. D., & Jemal, A. (2016). Cancer statistics, 2016. CA: a Cancer Journal for Clinicians, 66, 7–30.

    Google Scholar 

  5. Ghazanfar, S., & Yang, J. Y. (2016). Characterizing mutation-expression network relationships in multiple cancers. Computational Biology and Chemistry, 63, 73–82.

    Article  CAS  PubMed  Google Scholar 

  6. Gao, P., Zhou, X., Wang, Z. N., Song, Y. X., Tong, L. L., Xu, Y. Y., et al. (2012). Which is a more accurate predictor in colorectal survival analysis? Nine data mining algorithms vs. the TNM staging system. PLoS One, 7, e42015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Berger, M. F., Levin, J. Z., Vijayendran, K., Sivachenko, A., Adiconis, X., Maguire, J., et al. (2010). Integrative analysis of the melanoma transcriptome. Genome Research, 20, 413–427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Takahashi, M., Matsuoka, Y., Sumide, K., Nakatsuka, R., Fujioka, T., Kohno, H., et al. (2014). CD133 is a positive marker for a distinct class of primitive human cord blood-derived CD34-negative hematopoietic stem cells. Leukemia, 28, 1308–1315.

    Article  CAS  PubMed  Google Scholar 

  9. Roudi, R., Korourian, A., Shariftabrizi, A., & Madjd, Z. (2015). Differential expression of cancer stem cell markers ALDH1 and CD133 in various lung cancer subtypes. Cancer Investigation, 33, 294–302.

    Article  CAS  PubMed  Google Scholar 

  10. Zhou, Q., Chen, A., Song, H., Tao, J., Yang, H., & Zuo, M. (2015). Prognostic value of cancer stem cell marker CD133 in ovarian cancer: A meta-analysis. International Journal of Clinical and Experimental Medicine, 8, 3080–3088.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Jing, F., Kim, H. J., Kim, C. H., Kim, Y. J., Lee, J. H., & Kim, H. R. (2015). Colon cancer stem cell markers CD44 and CD133 in patients with colorectal cancer and synchronous hepatic metastases. International Journal of Oncology, 46, 1582–1588.

    Article  CAS  PubMed  Google Scholar 

  12. Li, J., Chen, J. N., Zeng, T. T., He, F., Chen, S. P., & Ma, S. (2016). CD133+ liver cancer stem cells resist interferon-gamma-induced autophagy. BMC Cancer, 16, 15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Marusyk, A., Almendro, V., & Polyak, K. (2012). Intra-tumor heterogeneity: A looking glass for cancer. Nature Reviews. Cancer, 12, 323–334.

    Article  CAS  PubMed  Google Scholar 

  14. Weitzel, J. N., Blazer, K. R., MacDonald, D. J., Culver, J. O., & Offit, K. (2011). Genetics, Genomics and Cancer risk assessment: State of the art and future directions in the era of personalized medicine. CA: a Cancer Journal for Clinicians, 61, 327–359.

    Google Scholar 

  15. Avgustinova, A., & Benitah, S. A. (2016). The epigenetics of tumour initiation: Cancer stem cells and their chromatin. Current Opinion in Genetics & Development, 36, 8–15.

    Article  CAS  Google Scholar 

  16. Xia, P. (2014). Surface markers of cancer stem cells in solid tumors. Current Stem Cell Research & Therapy, 9, 102–111.

    Article  CAS  Google Scholar 

  17. Jaime-Pérez, J. C., Villarreal-Villarreal, C. D., Vázquez-Garza, E., Méndez-Ramírez, N., Salazar-Riojas, R., & Gómez-Almaguer, D. (2016). Flow cytometry data analysis of CD34+/CD133+ stem cells in bone marrow and peripheral blood and T, B, and NK cells after hematopoietic grafting. Data in Brief, 7, 1151–1155.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Long, H., Xiang, T., Qi, W., Huang, J., Chen, J., He, L., et al. (2015). CD133+ ovarian cancer stem-like cells promote non-stem cancer cell metastasis via CCL5 induced epithelial-mesenchymal transition. Oncotarget, 6, 5846–5859.

    PubMed  PubMed Central  Google Scholar 

  19. Shah, M. M., & Landen, C. N. (2014). Ovarian cancer stem cells: Are they real and why are they important? Gynecologic Oncology, 132, 483–489.

    Article  PubMed  Google Scholar 

  20. Bonome, T., Levine, D. A., Shih, J., Randonovich, M., Pise-Masison, C. A., Bogomolniy, F., et al. (2008). A gene signature predicting for survival in suboptimally debulked patients with ovarian cancer. Cancer Research, 68, 5478–5486.

    Article  CAS  PubMed  Google Scholar 

  21. Yoshihara, K., Tajima, A., Adachi, S., Quan, J., Sekine, M., Kase, H., et al. (2011). Germline copy number variations in BRCA1-associated ovarian cancer patients. Genes, Chromosomes & Cancer, 50(2001), 167–177.

    Article  CAS  Google Scholar 

  22. Lin, C. H., Liu, C. H., Wen, C. H., Ko, P. L., & Chai, C. Y. (2015). Differential CD133 expression distinguishes malignant from benign papillary lesions of the breast. Virchows Archiv, 466, 177–184.

    Article  CAS  PubMed  Google Scholar 

  23. Ohtsubo, I., Ajiki, T., Hori, Y., Murakami, S., Shimizu, K., Itoh, T., et al. (2012). Distinctive expression of CD133 between intraductal papillary neoplasms of the bile duct and bile duct adenocarcinomas. Hepatology Research, 42, 574–582.

    Article  PubMed  Google Scholar 

  24. Shimizu, K., Itoh, T., Shimizu, M., Ku, Y., & Hori, Y. (2009). CD133 expression pattern distinguishes intraductal papillary mucinous neoplasms from ductal adenocarcinomas of the pancreas. Pancreas, 38, e207–e214.

    Article  CAS  PubMed  Google Scholar 

  25. Fellay, J., Ge, D., Shianna, K. V., Colombo, S., Ledergerber, B., Cirulli, E. T., et al. (2009). Common genetic variation and the control of HIV-1 in humans. PLoS Genetics, 5, e1000791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Irvin, M. R., Wineinger, N. E., Rice, T. K., Pajewski, N. M., Kabagambe, E. K., Gu, C. C., et al. (2011). Genome-wide detection of allele specific copy number variation associated with insulin resistance in African Americans from the HyperGEN study. PLoS One, 6, e24052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu, S., Xie, L., Yue, J., Ma, T., Peng, C., Qiu, B., et al. (2016). Whole-exome sequencing identifies a novel homozygous frameshift mutation in the PROM1 gene as a causative mutation in two patients with sporadic retinitis pigmentosa. International Journal of Molecular Medicine, 37, 1528–1534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pohl, A., El-Khoueiry, A., Yang, D., Zhang, W., Lurje, G., Ning, Y., et al. (2013). Pharmacogenetic profiling of CD133 is associated with response rate (RR) and progression-free survival (PFS) in patients with metastatic colorectal cancer (mCRC), treated with bevacizumab-based chemotherapy. The Pharmacogenomics Journal, 13, 173–180.

    Article  CAS  PubMed  Google Scholar 

  29. Wang, Q., Liu, H., Xiong, H., Liu, Z., Wang, L. E., Qian, J., et al. (2015). Polymorphisms at the microRNA binding-site of the stem cell marker gene CD133 modify susceptibility to and survival of gastric cancer. Molecular Carcinogenesis, 54, 449–458.

    Article  CAS  PubMed  Google Scholar 

  30. Cheng, M., Yang, L., Yang, R., Yang, X., Deng, J., Yu, B., et al. (2013). A microRNA-135a/b binding polymorphism in CD133 confers decreased risk and favorable prognosis of lung cancer in Chinese by reducing CD133 expression. Carcinogenesis, 34, 2292–2299.

    Article  CAS  PubMed  Google Scholar 

  31. Liu, Y., Ren, S., Xie, L., Cui, C., Xing, Y., Liu, C., et al. (2015). Mutation of N-linked glycosylation at Asn548 in CD133 decreases its ability to promote hepatoma cell growth. Oncotarget, 6, 20650–20660.

    PubMed  PubMed Central  Google Scholar 

  32. Aravantinos, G., Isaakidou, A., Karantanos, T., Sioziou, A., Theodoropoulos, G. E., Pektasides, D., et al. (2015). Association of CD133 polymorphisms and response to bevacizumab in patients with metastatic colorectal cancer. Cancer Biomarkers, 15, 843–850.

    Article  CAS  PubMed  Google Scholar 

  33. Schroeder, M. P., Gonzalez-Perez, A., & Lopez-Bigas, N. (2013). Visualizing multidimensional cancer genomics data. Genome Medicine, 5, 9.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Fabregat, I., Malfettone, A., & Soukupova, J. (2016). New insights into the crossroads between emt and stemness in the context of cancer. Journal of Clinical Medicine, 5, E37.

    Article  CAS  PubMed  Google Scholar 

  35. Koren, A., Rijavec, M., Kern, I., Sodja, E., Korosec, P., & Cufer, T. (2016). BMI1, ALDH1A1, and CD133 transcripts connect epithelial-mesenchymal transition to cancer stem cells in lung carcinoma. Stem Cells International, 2016, 9714315.

    Article  CAS  PubMed  Google Scholar 

  36. Lee, S. O., Yang, X., Duan, S., Tsai, Y., Strojny, L. R., Keng, P., et al. (2016). IL-6 promotes growth and epithelial-mesenchymal transition of CD133+ cells of non-small cell lung cancer. Oncotarget, 7, 6626–6638.

    PubMed  Google Scholar 

  37. Zhi, Y., Mou, Z., Chen, J., He, Y., Dong, H., Fu, X., et al. (2015). B7H1 expression and epithelial-to-mesenchymal transition phenotypes on colorectal cancer stem-like cells. PLoS One, 10, e0135528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Drachsler, M., Kleber, S., Mateos, A., Volk, K., Mohr, N., Chen, S., et al. (2016). CD95 maintains stem cell-like and non-classical EMT programs in primary human glioblastoma cells. Cell Death & Disease, 27, e2209.

    Article  CAS  Google Scholar 

  39. Lin, C. W., Lin, P. Y., & Yang, P. C. (2016). Noncoding RNAs in tumor epithelial-to-mesenchymal transition. Stem Cells International, 2016, 2732705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tsukasa, K., Ding, Q., Miyazaki, Y., Matsubara, S., Natsugoe, S., & Takao, S. (2016). miR-30 family promotes migratory and invasive abilities in CD133+ pancreatic cancer stem-like cells. Human Cell, 29, 130–137.

    Article  CAS  PubMed  Google Scholar 

  41. Howard, S., Deroo, T., Fujita, Y., & Itasaki, N. (2011). A positive role of cadherin in Wnt/β-catenin signalling during epithelial-mesenchymal transition. PLoS One, 6, e23899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Czyzewska, J., Guzińska-Ustymowicz, K., Ustymowicz, M., Pryczynicz, A., & Kemona, A. (2010). The expression of E-cadherincatenin complex in patients with advanced gastric cancer: Role in formation of metastasis. Folia Histochemica et Cytobiologica, 48, 37–45.

    Article  PubMed  Google Scholar 

  43. Yoshii, T., Miyagi, Y., Nakamura, Y., Kobayashi, O., Kameda, Y., & Ohkawa, S. (2013). Pilot research for the correlation between the expression pattern of E-cadherin-β-catenin complex and lymph node metastasis in early gastric cancer. Tumori, 99, 234–238.

    Article  CAS  PubMed  Google Scholar 

  44. Mak, A. B., Nixon, A. M. L., Kittanakom, S., Stewart, J. M., Chen, G. I., Curak, J., Gingras, A. C., Mazitschek, R., Neel, B. G., Stagljar, I., & Moffat, J. (2012). Regulation of CD133 by HDAC6 promotes β-catenin signaling to suppress cancer cell differentiation. Cell Reports, 2, 951–963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cuajungco, M. P., Podevin, W., Valluri, V. K., Bui, Q., Nguyen, V. H., & Taylor, K. (2012). Abnormal accumulation of human transmembrane (TMEM)-176A and 176B proteins is associated with cancer pathology. Acta Histochemica, 114, 705–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hrasovec, S., Hauptman, N., Glavac, D., Jelenc, F., & Ravnik-Glavac, M. (2013). TMEM25 is a candidate biomarker rmethylated and down-regulated in colorectal cancer. Disease Markers, 34, 93–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xu, X. Y., Zhang, L. J., Yu, Y. Q., Zhang, X. T., Huang, W. J., Nie, X. C., et al. (2014). Down-regulated MAC30 expression inhibits proliferation and mobility of human gastric cancer cells. Cellular Physiology and Biochemistry, 33, 1359–1368.

    Article  CAS  PubMed  Google Scholar 

  48. Kim, S. T., Sohn, I., DO, I. G., Jang, J., Kim, S. H., Jung, I. H., et al. (2014). Transcriptome analysis of CD133-positive stem cells and prognostic value of survivin in colorectal cancer. Cancer Genomics Proteomics, 11, 259–266.

    PubMed  Google Scholar 

  49. Wang, Y., Nathanson, L., & McNiece, I. K. (2011). Differential hematopoietic supportive potential and gene expression of stroma cell lines from midgestation mouse placenta and adult bone marrow. Cell Transplantation, 20, 707–726.

    Article  PubMed  Google Scholar 

  50. Li, C., Wang, C., Xing, Y., Zhen, J., & Ai, Z. (2016). CD133 promotes gallbladder carcinoma cell migration through activating Akt phosphorylation. Oncotarget, 7, 17751–17759.

    PubMed  PubMed Central  Google Scholar 

  51. Tsukasa, K., Ding, Q., Yoshimitsu, M., Miyazaki, Y., Matsubara, S., & Takao, S. (2015). Slug contributes to gemcitabine resistance through epithelial-mesenchymal transition in CD133(+) pancreatic cancer cells. Human Cell, 28, 167–174.

    Article  CAS  PubMed  Google Scholar 

  52. Hong, S. W., Hur, W., Choi, J. E., Kim, J. H., Hwang, D., & Yoon, S. K. (2016). Role of ADAM17 in invasion and migration of CD133-expressing liver cancer stem cells after irradiation. Oncotarget, 7, 23482–23497.

    PubMed  PubMed Central  Google Scholar 

  53. Feduska, J. M., Aller, S. G., Garcia, P. L., Cramer, S. L., Council, L. N., van Waardenburg, R. C., et al. (2015). ICAM-2 confers a non-metastatic phenotype in neuroblastoma cells by interaction with α-actinin. Oncogene, 34, 1553–1562.

    Article  CAS  PubMed  Google Scholar 

  54. Yiming, L., Yunshan, G., Bo, M., Yu, Z., Tao, W., Gengfang, L., et al. (2015). CD133 overexpression correlates with clinicopathological features of gastric cancer patients and its impact on survival: A systematic review and meta-analysis. Oncotarget, 6, 42019–42027.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wang, W., Chen, Y., Deng, J., Zhou, J., Zhou, Y., Wang, S., et al. (2014). The prognostic value of CD133 expression in non-small cell lung cancer: A meta-analysis. Tumour Biology, 35, 9769–9775.

    Article  CAS  PubMed  Google Scholar 

  56. Gottschling, S., Jensen, K., Herth, F. J., Thomas, M., Schnabel, P. A., & Herpel, E. (2013). Lack of prognostic significance of neuroendocrine differentiation and stem cell antigen co-expression in resected early-stage non-small cell lung cancer. Anticancer Research, 33, 981–990.

    PubMed  Google Scholar 

  57. Hong, I., Hong, S. W., Chang, Y. G., Lee, W. Y., Lee, B., Kang, Y. K., et al. (2015). Expression of the cancer stem cell markers CD44 and CD133 in colorectal cancer: An immunohistochemical staining analysis. Annals of Coloproctology, 31, 84–91.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zhou, F., Mu, Y. D., Liang, J., Liu, Z. X., Chen, H. S., & Zhang, J. F. (2014). Expression and prognostic value of tumor stem cell markers ALDH1 and CD133 in colorectal carcinoma. Oncology Letters, 7, 507–512.

    Article  PubMed  Google Scholar 

  59. Huang, M., Zhu, H., Feng, J., Ni, S., & Huang, J. (2015). High CD133 expression in the nucleus and cytoplasm predicts poor prognosis in non-small cell lung cancer. Disease Markers, 2015, 986095.

    PubMed  PubMed Central  Google Scholar 

  60. Cantile, M., Collina, F., D'Aiuto, M., Rinaldo, M., Pirozzi, G., Borsellino, C., et al. (2013). Nuclear localization of cancer stem cell marker CD133 in triple-negative breast cancer: A case report. Tumori, 99, e245–e250.

    Article  PubMed  Google Scholar 

  61. Hashimoto, K., Aoyagi, K., Isobe, T., Kouhuji, K., & Shirouzu, K. (2014). Expression of CD133 in the cytoplasm is associated with cancer progression and poor prognosis in gastric cancer. Gastric Cancer, 17, 97–106.

    Article  CAS  PubMed  Google Scholar 

  62. Sasaki, A., Kamiyama, T., Yokoo, H., Nakanishi, K., Kubota, K., Haga, H., et al. (2010). Cytoplasmic expression of CD133 is an important risk factor for overall survival in hepatocellular carcinoma. Oncology Reports, 24, 537–546.

    Article  CAS  PubMed  Google Scholar 

  63. McKenzie, J. L., Gan, O. I., Doedens, M., & Dick, J. E. (2007). Reversible cell surface expression of CD38 on CD34-positive human hematopoietic repopulating cells. Experimental Hematology, 35, 1429–1436.

    Article  CAS  PubMed  Google Scholar 

  64. Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3, 730–737.

    Article  CAS  PubMed  Google Scholar 

  65. Camacho Villa, A. Y., Reyes Maldonado, E., Montiel Cervantes, L. A., & Vela Ojeda, J. (2012). CD133+CD34+ and CD133+CD38+ blood progenitor cells as predictors of platelet engraftment in patients undergoing autologous peripheral blood stem cell transplantation. Transfusion and Apheresis Science, 46, 239–244.

    Article  PubMed  Google Scholar 

  66. Gemei, M., Di Noto, R., Mirabelli, P., & Del Vecchio, L. (2013). Cytometric profiling of CD133+ cells in human colon carcinoma cell lines identifies a common core phenotype and cell type-specific mosaics. The International Journal of Biological Markers, 28, 267–273.

    Article  CAS  PubMed  Google Scholar 

  67. Miao, Y., Fan, L., Wu, Y. J., Xia, Y., Qiao, C., Wang, Y., et al. (2016). Low expression of CD200 predicts shorter time-to-treatment in chronic lymphocytic leukemia. Oncotarget, 7, 13551–13562.

    PubMed  PubMed Central  Google Scholar 

  68. Rhodes, D. R., Kalyana-Sundaram, S., Mahavisno, V., Varambally, R., Yu, J., Briggs, B. B., et al. (2007). Oncomine 3.0: Genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia, 9, 166–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gyorffy, B., Lanczky, A., & Szallasi, Z. (2012). Implementing an online tool for genome-wide validation of survival-associated biomarkers in ovarian-cancer using microarray data from 1287 patients. Endocrine-Related Cancer, 19, 197–208.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by National Natural Scientific Foundation of China (No.81502558) and Talents Introduction Projects of Liaoning Medical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pu Xia.

Ethics declarations

Conflict of Interest

None.

Electronic supplementary material

ESM 1

(XLS 53 kb)

ESM 2

(XLS 102 kb)

ESM 3

(DOCX 2421 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, GM., Mou, FF., Hou, W. et al. Integrative Analysis of CD133 mRNA in Human Cancers Based on Data Mining. Stem Cell Rev and Rep 15, 23–34 (2019). https://doi.org/10.1007/s12015-018-9865-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-018-9865-2

Keywords

Navigation