Skip to main content
Log in

MicroRNAs in the Migration of Mesenchymal Stem Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) represent a promising source of cell-based therapies for treatment of a wide variety of injuries and diseases. Their tropism and migration to the damaged sites, which are elicited by cytokines secreted from tissues around pathology, are the prerequisite for tissue repair and regeneration. Better understanding of the elicited-migration of MSCs and discovering conditions that elevate their migration ability, will help to increase their homing to pathologies and improve therapeutic efficacy. It is increasingly recognized that microRNAs are important regulators of cell migration. Here we summarize current understanding of the microRNA-regulated migration of MSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Filipowicz, W., Bhattacharyya, S. N., & Sonenberg, N. (2008). Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nature Reviews Genetics, 9, 102–114.

    Article  CAS  Google Scholar 

  2. Hausser, J., & Zavolan, M. (2014). Identification and consequences of miRNA-target interactions - beyond repression of gene expression. Nature Reviews Genetics, 15, 599–612.

    Article  CAS  Google Scholar 

  3. Huntzinger, E., & Izaurralde, E. (2011). Gene silencing by microRNAs: Contributions of translational repression and mRNA decay. Nature Reviews Genetics, 12, 99–110.

    Article  CAS  Google Scholar 

  4. Lindsay, S. L., Johnstone, S. A., McGrath, M. A., Mallinson, D., & Barnett, S. C. (2016). Comparative miRNA-based fingerprinting reveals biological differences in human olfactory mucosa-and bone-marrow-derived mesenchymal stromal cells. Stem Cell Reports, 6, 729–742.

    Article  CAS  Google Scholar 

  5. Bellayr, I. H., Kumar, A., & Puri, R. K. (2017). MicroRNA expression in bone marrow-derived human multipotent stromal cells. BMC Genomics, 18, 605–617.

    Article  Google Scholar 

  6. Ali, N. M., Boo, L., Yeap, S. K., et al. (2016). Probable impact of age and hypoxia on proliferation and microRNA expression profile of bone marrow-derived human mesenchymal stem cells. Peer J, e1536, 4.

    Google Scholar 

  7. Hsieh, J. Y., Huang, T. S., Cheng, S. M., Lin, W. S., Tsai, T. N., Lee, O. K., & Wang, H. W. (2013). MiR-146a-5p circuitry uncouples cell proliferation and migration, but not differentiation, in human mesenchymal stem cells. Nucleic Acids Research, 41, 9753–9763.

    Article  CAS  Google Scholar 

  8. Baglio, S. R., Devescovi, V., Granchi, D., & Baldini, N. (2013). MicroRNA expression profiling of human bone marrow mesenchymal stem cells during osteogenic differentiation reveals Osterix regulation by miR-31. Gene, 527, 321–331.

    Article  CAS  Google Scholar 

  9. Chang, C. C., Veno, M. T., Chen, L., et al. (2018). Global microRNA profiling in human bone marrow skeletal-stromal or mesenchymal-stem cells identified candidates for bone regeneration. Molecular Therapy, 26, 593–605.

    Article  CAS  Google Scholar 

  10. Cui, L. N., Zhou, X. M., Li, J. G., et al. (2012). Dynamic microRNA profiles of hepatic differentiated human umbilical cord lining-derived mesenchymal stem cells. PLoS One, 7, e44737.

    Article  Google Scholar 

  11. Huat, T. J., Khan, A. A., Abdullah, J. M., Idris, F. M., & Jaafar, H. (2015). MicroRNA expression profile of neural progenitor-like cells derived from rat bone marrow mesenchymal stem cells under the influence of IGF-1, bFGF and EGF. International Journal of Molecular Sciences, 16, 9693–9718.

    Article  CAS  Google Scholar 

  12. Gothelf, Y., Kaspi, H., Abramov, N., & Aricha, R. (2017). MiRNA profiling of NurOwn (R): Mesenchymal stem cells secreting neurotrophic factors. Stem Cell Research & Therapy, 8, 249–257.

    Article  Google Scholar 

  13. Clark, E. A., Kalomoiris, S., Nolta, J. A., & Fierro, F. A. (2014). Concise review: microRNA function in multipotent mesenchymal stromal cells. Stem Cells, 32, 1074–1082.

    Article  CAS  Google Scholar 

  14. Guo, L., Zhao, R. C. H., & Wu, Y. J. (2011). The role of microRNAs in self-renewal and differentiation of mesenchymal stem cells. Experimental Hematology, 39, 608–616.

    Article  CAS  Google Scholar 

  15. Peng, S. P., Gao, D., Gao, C. D., Wei, P. P., Niu, M., & Shuai, C. J. (2016). MicroRNAs regulate signaling pathways in osteogenic differentiation of mesenchymal stem cells (review). Molecular Medicine Reports, 14, 623–629.

    Article  CAS  Google Scholar 

  16. Huang, C., Geng, J. N., & Jiang, S. W. (2017). MicroRNAs in regulation of osteogenic differentiation of mesenchymal stem cells. Cell and Tissue Research, 368, 229–238.

    Article  CAS  Google Scholar 

  17. Kang, H., & Hata, A. (2015). The role of microRNAs in cell fate determination of mesenchymal stem cells: Balancing adipogenesis and osteogenesis. BMB Reports, 48, 319–323.

    Article  CAS  Google Scholar 

  18. Hamam, D., Ali, D., Kassem, M., Aldahmash, A., & Alajez, N. M. (2015). MicroRNAs as regulators of adipogenic differentiation of mesenchymal stem cells. Stem Cells and Development, 24, 417–425.

    Article  CAS  Google Scholar 

  19. Parsons, J. T., Horwitz, A. R., & Schwartz, M. A. (2010). Cell adhesion: Integrating cytoskeletal dynamics and cellular tension. Nature Reviews Molecular Cell Biology, 11, 633–643.

    Article  CAS  Google Scholar 

  20. Huang, S. L., & He, X. H. (2010). MicroRNAs: Tiny RNA molecules, huge driving forces to move the cell. Protein & Cell, 1, 916–926.

    Article  CAS  Google Scholar 

  21. Chen, D., Xia, Y. L., Zuo, K., et al. (2015). Crosstalk between SDF-1/CXCR4 and SDF-1/CXCR7 in cardiac stem cell migration. Scientific Reports, 5, 16813–16821.

    Article  CAS  Google Scholar 

  22. Liu, X. L., Duan, B. Y., Cheng, Z. K., et al. (2011). SDF-1/CXCR4 axis modulates bone marrow mesenchymal stem cell apoptosis, migration and cytokine secretion. Protein & Cell, 2, 845–854.

    Article  CAS  Google Scholar 

  23. Son, B. R., Zhao, D. L., Marquez-Curtis, L. A., Shirvaikar, N., Ratajczak, M. Z., & Janowska-Wieczorek, A. (2004). SDF-1-CXCR4 and HGF-c-met axes regulate mobilization/recruitment to injured tissue of human mesenchymal stem cells. Blood, 642a, 104.

    Google Scholar 

  24. Lu, M. H., Hu, C. J., Chen, L., et al. (2013). miR-27b represses migration of mouse MSCs to burned margins and prolongs wound repair through silencing SDF-1a. PLoS One, 8, e68972.

    Article  CAS  Google Scholar 

  25. Lu, M. H., Li, C. Z., Hu, C. J., et al. (2012). MicroRNA-27b suppresses mouse MSC migration to the liver by targeting SDF-1 alpha in vitro. Biochemical and Biophysical Research Communications, 421, 389–395.

    Article  CAS  Google Scholar 

  26. Pillai, M. M., Yang, X., Balakrishnan, I., Bemis, L., & Torok-Storb, B. (2010). MiR-886-3p down regulates CXCL12 (SDF1) expression in human marrow stromal cells. PLoS One, 5, e14304.

    Article  CAS  Google Scholar 

  27. Li, J. N., Li, L., Li, Z. X., et al. (2015). The role of miR-205 in the VEGF-mediated promotion of human ovarian cancer cell invasion. Gynecologic Oncology, 137, 125–133.

    Article  CAS  Google Scholar 

  28. Susuki, D., Kimura, S., Naganuma, S., Tsuchiyama, K., Tanaka, T., Kitamura, N., Fujieda, S., & Itoh, H. (2011). Regulation of microRNA expression by hepatocyte growth factor in human head and neck squamous cell carcinoma. Cancer Science, 102, 2164–2171.

    Article  CAS  Google Scholar 

  29. Tome, M., Lopez-Romero, P., Albo, C., et al. (2011). MiR-335 orchestrates cell proliferation, migration and differentiation in human mesenchymal stem cells. Cell Death and Differentiation, 18, 985–995.

    Article  CAS  Google Scholar 

  30. Yue, Q., Zhang, Y., Li, X. Y., et al. (2016). MiR-124 suppresses the chemotactic migration of rat mesenchymal stem cells toward HGF by downregulating Wnt/beta-catenin signaling. European Journal of Cell Biology, 95, 342–353.

    Article  CAS  Google Scholar 

  31. Zhu, A., Kang, N., He, L., Li, X., Xu, X., & Zhang, H. (2016). MiR-221 and miR-26b regulate chemotactic migration of MSCs toward HGF through activation of Akt and FAK. Journal of Cellular Biochemistry, 117, 1370–1383.

    Article  CAS  Google Scholar 

  32. Chi, Y., Cui, J., Wang, Y., du, W., Chen, F., Li, Z., Ma, F., Song, B., Xu, F., Zhao, Q., Han, Z., & Han, Z. (2016). Interferongamma alters the microRNA profile of umbilical cord-derived mesenchymal stem cells. Molecular Medicine Reports, 14, 4187–4197.

  33. Fayyad-Kazan, H., Fayyad-Kazan, M., Badran, B., Bron, D., Lagneaux, L., & Najar, M. (2017). Study of the microRNA expression profile of foreskin derived mesenchymal stromal cells following inflammation priming. Journal of Translational Medicine, 15, 10.

    Article  Google Scholar 

  34. He, L. H., Wang, X. Y., Kang, N. X., et al. (2018). MiR-375 inhibits the hepatocyte growth factor-elicited migration of mesenchymal stem cells by downregulating Akt signaling. Cell and Tissue Research, 372, 99–114.

    Article  CAS  Google Scholar 

  35. Neth, P., Ries, C., Karow, M., Egea, V., Ilmer, M., & Jochum, M. (2007). The Wnt signal transduction pathway in stem cells and cancer cells: Influence on cellular invasion. Stem Cell Reviews, 3, 18–29.

    Article  CAS  Google Scholar 

  36. Ryu, C. H., Park, S. A., Kim, S. M., Lim, J. Y., Jeong, C. H., Jun, J. A., Oh, J. H., Park, S. H., Oh, W. I., & Jeun, S. S. (2010). Migration of human umbilical cord blood mesenchymal stem cells mediated by stromal cell-derived factor-1/CXCR4 axis via Akt, ERK, and p38 signal transduction pathways. Biochemical and Biophysical Research Communications, 398, 105–110.

    Article  CAS  Google Scholar 

  37. Li, X. Y., He, L. H., Yue, Q., et al. (2017). MiR-9-5p promotes MSC migration by activating beta-catenin signaling pathway. American Journal of Physiology-Cell Physiology, 313, C80–C93.

    Article  Google Scholar 

  38. Sotsios, Y., & Ward, S. G. (2000). Phosphoinositide 3-kinase: A key biochemical signal for cell migration in response to chemokines. Immunological Reviews, 177, 217–235.

    Article  CAS  Google Scholar 

  39. Garcia-Martinez, J. M., Moran, J., Clarke, R. G., et al. (2009). Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR). Biochemical Journal, 421, 29–42.

    Article  CAS  Google Scholar 

  40. Mora, A., Davies, A. M., Bertrand, L., Sharif, I., Budas, G. R., Jovanović, S., Mouton, V., Kahn, C. R., Lucocq, J. M., Gray, G. A., Jovanović, A., & Alessi, D. R. (2003). Deficiency of PDK1 in cardiac muscle results in heart failure and increased sensitivity to hypoxia. The EMBO Journal, 22, 4666–4676.

    Article  CAS  Google Scholar 

  41. Mora, A., Lipina, C., Tronche, F., Sutherland, C., & Alessi, D. R. (2005). Deficiency of PDK1 in liver results in glucose intolerance, impairment of insulin-regulated gene expression and liver failure. Biochemical Journal, 385, 639–648.

    Article  CAS  Google Scholar 

  42. Sarbassov, D. D., Guertin, D. A., Ali, S. M., & Sabatini, D. M. (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science, 307, 1098–1101.

    Article  CAS  Google Scholar 

  43. Song, M. S., Salmena, L., & Pandolfi, P. P. (2012). The functions and regulation of the PTEN tumour suppressor. Nature Reviews Molecular Cell Biology, 13, 283–296.

    Article  CAS  Google Scholar 

  44. Zheng, B., Wang, C., He, L., Xu, X., Qu, J., Hu, J., & Zhang, H. (2013). Neural differentiation of mesenchymal stem cells influences chemotactic responses to HGF. Journal of Cellular Physiology, 228, 149–162.

    Article  CAS  Google Scholar 

  45. Dabbah, M., Attar-Schneider, O., Zismanov, V., Matalon, S. T., Lishner, M., & Drucker, L. (2016). Multiple myeloma cells promote migration of bone marrow mesenchymal stem cells by altering their translation initiation. Journal of Leukocyte Biology, 100, 761–770.

    Article  CAS  Google Scholar 

  46. Aman, A., & Piotrowski, T. (2008). Wnt/beta-catenin and FGF signaling control collective cell migration by restricting chemokine receptor expression. Developmental Cell, 15, 749–761.

    Article  CAS  Google Scholar 

  47. Asad, M., Wong, M. K., Tan, T. Z., Choolani, M., Low, J., Mori, S., Virshup, D., Thiery, J. P., & Huang, R. Y. J. (2014). FZD7 drives in vitro aggressiveness in stem-a subtype of ovarian cancer via regulation of non-canonical Wnt/PCP pathway. Cell Death & Disease, 5, e1346.

    Article  CAS  Google Scholar 

  48. Gomez-Orte, E., Saenz-Narciso, B., Moreno, S., & Cabello, J. (2013). Multiple functions of the noncanonical Wnt pathway. Trends in Genetics, 29, 545–553.

    Article  CAS  Google Scholar 

  49. Montcouquiol, M., Crenshaw, E. B., & Kelley, M. W. (2006). Noncanonical Wnt signaling and neural polarity. Annual Review of Neuroscience, 29, 363–386.

    Article  CAS  Google Scholar 

  50. Song, J. L., Nigam, P., Tektas, S. S., & Selva, E. (2015). MicroRNA regulation of Wnt signaling pathways in development and disease. Cellular Signalling, 27, 1380–1391.

    Article  CAS  Google Scholar 

  51. Ueno, K., Hirata, H., Hinoda, Y., & Dahiya, R. (2013). Frizzled homolog proteins, microRNAs and Wnt signaling in cancer. International Journal of Cancer, 132, 1731–1740.

    Article  CAS  Google Scholar 

  52. Wu, X. Y., Shen, Q. T., Oristian, D. S., et al. (2011). Skin stem cells orchestrate directional migration by regulating microtubule-ACF7 connections through GSK3 beta. Cell, 144, 341–352.

    Article  CAS  Google Scholar 

  53. Köhler, A., Schambony, A., & Wedlich, D. . (2007). Cell migration under control of Wnt-signaling in the vertebrate embryo. Advances in Developmental Biology, 17, 159–201.

    Article  Google Scholar 

  54. Zhang, J., Han, C., & Wu, T. (2012). MicroRNA-26a promotes cholangiocarcinoma growth by activating beta-catenin. Gastroenterology, 143, 246–256.e248.

    Article  CAS  Google Scholar 

  55. Kim, Y. S., Noh, M. Y., Kim, J. Y., Yu, H. J., Kim, K. S., Kim, S. H., & Koh, S. H. (2013). Direct GSK-3beta inhibition enhances mesenchymal stromal cell migration by increasing expression of beta-PIX and CXCR4. Molecular Neurobiology, 47, 811–820.

    Article  CAS  Google Scholar 

  56. Lapid, K., Itkin, T., D'Uva, G., et al. (2013). GSK3 beta regulates physiological migration of stem/progenitor cells via cytoskeletal rearrangement. Journal of Clinical Investigation, 123, 1705–1717.

    Article  CAS  Google Scholar 

  57. Sun, T., Rodriguez, M., & Kim, L. (2009). Glycogen synthase kinase 3 in the world of cell migration. Development, Growth & Differentiation, 51, 735–742.

    Article  CAS  Google Scholar 

  58. Yucel, G., & Oro, A. E. (2011). Cell migration: GSK3 beta steers the cytoskeleton's tip. Cell, 144, 319–321.

    Article  CAS  Google Scholar 

  59. Karow, M., Popp, T., Egea, V., Ries, C., Jochum, M., & Neth, P. (2009). Wnt signalling in mouse mesenchymal stem cells: Impact on proliferation, invasion and MMP expression. Journal of Cellular and Molecular Medicine, 13, 2506–2520.

    Article  Google Scholar 

  60. Neth, P., Ciccarella, M., Egea, V., Hoelters, J., Jochum, M., & Ries, C. (2006). Wnt signaling regulates the invasion capacity of human mesenchymal stem cells. Stem Cells, 24, 1892–1903.

    Article  CAS  Google Scholar 

  61. Romer, L. H., Birukov, K. G., & Garcia, J. G. N. (2006). Focal adhesions - paradigm for a signaling nexus. Circulation Research, 98, 606–616.

    Article  CAS  Google Scholar 

  62. Zamir, E., & Geiger, B. (2001). Molecular complexity and dynamics of cell-matrix adhesions. Journal of Cell Science, 114, 3583–3590.

    CAS  PubMed  Google Scholar 

  63. Hamadi, A., Bouali, M., Dontenwill, M., Stoeckel, H., Takeda, K., & Ronde, P. (2005). Regulation of focal adhesion dynamics and disassembly by phosphorylation of FAK at tyrosine 397. Journal of Cell Science, 118, 4415–4425.

    Article  CAS  Google Scholar 

  64. Illc, D., Furuta, Y., Kanazawa, S., et al. (1995). Reduced sell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature, 377, 539–544.

    Article  Google Scholar 

  65. Zhang, F. X., Jing, S. H., Ren, T. M., & Lin, J. T. (2013). MicroRNA-10b promotes the migration of mouse bone marrow-derived mesenchymal stem cells and downregulates the expression of E-cadherin. Molecular Medicine Reports, 8, 1084–1088.

    Article  CAS  Google Scholar 

  66. Vogelmann, R., Nguyen-Tat, M. D., Giehl, K., Adler, G., Wedlich, D., & Menke, A. (2005). TGF beta-induced downregulation of E-cadherin-based cell-cell adhesion depends on PI3-kinase and PTEN. Journal of Cell Science, 118, 4901–4912.

    Article  CAS  Google Scholar 

  67. Chang, W., Kim, R., Park, S. I., Jung, Y. J., Ham, O., Lee, J., Kim, J. H., Oh, S., Lee, M. Y., Kim, J., Park, M. S., Chung, Y. A., Hwang, K. C., & Maeng, L. S. (2015). Enhanced healing of rat calvarial bone defects with hypoxic conditioned medium from mesenchymal stem cells through increased endogenous stem cell migration via regulation of ICAM-1 targeted-microRNA-221. Molecules and Cells, 38, 643–650.

    Article  CAS  Google Scholar 

  68. Etienne-Manneville, S. (2013). Microtubules in cell migration. Annual Review of Cell and Developmental Biology, 29, 471–499.

    Article  CAS  Google Scholar 

  69. Watanabe, T., Noritake, J., & Kaibuchi, K. (2005). Regulation of microtubules in cell migration. Trends in Cell Biology, 15, 76–83.

    Article  CAS  Google Scholar 

  70. Delaloy, C., Liu, L., Lee, J. A., Su, H., Shen, F., Yang, G. Y., Young, W. L., Ivey, K. N., & Gao, F. B. (2010). MicroRNA-9 coordinates proliferation and migration of human embryonic stem cell-derived neural progenitors. Cell Stem Cell, 6, 323–335.

    Article  CAS  Google Scholar 

  71. Phinney, D. G., & Pittenger, M. F. (2017). Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells, 35, 851–858.

    Article  CAS  Google Scholar 

  72. Arslan, F., Lai, R. C., Smeets, M. B., Akeroyd, L., Choo, A., Aguor, E. N. E., Timmers, L., van Rijen, H. V., Doevendans, P. A., Pasterkamp, G., Lim, S. K., & de Kleijn, D. P. (2013). Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Research, 10, 301–312.

    Article  CAS  Google Scholar 

  73. Lai, R. C., Arslan, F., Lee, M. M., Sze, N. S. K., Choo, A., Chen, T. S., Salto-Tellez, M., Timmers, L., Lee, C. N., el Oakley, R. M., Pasterkamp, G., de Kleijn, D. P. V., & Lim, S. K. (2010). Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Research, 4, 214–222.

    Article  CAS  Google Scholar 

  74. Vonk, L. A., van Dooremalen, S. F. J., Liv, N., Klumperman, J., Coffer, P. J., Saris, D. B. F., & Lorenowicz, M. J. (2018). Mesenchymal stromal/stem cell-derived extracellular vesicles promote human cartilage regeneration in vitro. Theranostics, 8, 906–920.

    Article  CAS  Google Scholar 

  75. Bruno, S., Grange, C., Deregibus, M. C., Calogero, R. A., Saviozzi, S., Collino, F., Morando, L., Busca, A., Falda, M., Bussolati, B., Tetta, C., & Camussi, G. (2009). Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. Journal of the American Society of Nephrology, 20, 1053–1067.

    Article  CAS  Google Scholar 

  76. Xin, H. Q., Li, Y., Liu, Z. W., et al. (2013). MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells, 31, 2737–2746.

    Article  CAS  Google Scholar 

  77. Li, T. F., Yan, Y. M., Wang, B. Y., et al. (2013). Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells and Development, 22, 845–854.

    Article  CAS  Google Scholar 

  78. Zhang, B., Wang, M., Gong, A. H., et al. (2015). HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing. Stem Cells, 33, 2158–2168.

    Article  CAS  Google Scholar 

  79. Nakamura, Y., Miyaki, S., Ishitobi, H., Matsuyama, S., Nakasa, T., Kamei, N., Akimoto, T., Higashi, Y., & Ochi, M. (2015). Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration. FEBS Letters, 589, 1257–1265.

    Article  CAS  Google Scholar 

  80. Tao, S. C., Yuan, T., Zhang, Y. L., Yin, W. J., Shang-Chun, G., & Zhang, C. Q. (2017). Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics, 7, 180–195.

    Article  CAS  Google Scholar 

  81. Zhu, J., Lu, K., Zhang, N., et al. (2017). Myocardial reparative functions of exosomes from mesenchymal stem cells are enhanced by hypoxia treatment of the cells via transferring microRNA-210 in an nSMase2-dependent way. Artificial Cells, Nanomedicine, and Biotechnology, 1–12.

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant no. 31371407, 30870642) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Funding

This contribution is supported by the National Natural Science Foundation of China (Grant no. 31371407, 30870642) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanxiang Zhang.

Ethics declarations

Conflict of Interest

The authors declare no potential conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Zhang, H. MicroRNAs in the Migration of Mesenchymal Stem Cells. Stem Cell Rev and Rep 15, 3–12 (2019). https://doi.org/10.1007/s12015-018-9852-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-018-9852-7

Keywords

Navigation