Skip to main content
Log in

Kinin-B2 Receptor Activity in Skeletal Muscle Regeneration and Myoblast Differentiation

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The bioactive peptide bradykinin obtained from cleavage of precursor kininogens activates the kinin-B2 receptor functioning in induction of inflammation and vasodilatation. In addition, bradykinin participates in kidney and cardiovascular development and neuronal and muscle differentiation. Here we show that kinin-B2 receptors are expressed throughout differentiation of murine C2C12 myoblasts into myotubes. An autocrine loop between receptor activation and bradykinin secretion is suggested, since bradykinin secretion is significantly reduced in the presence of the kinin-B2 receptor antagonist HOE-140 during differentiation. Expression of skeletal muscle markers and regenerative capacity were decreased after pharmacological inhibition or genetic ablation of the B2 receptor, while its antagonism increased the number of myoblasts in culture. In summary, the present work reveals to date no functions described for the B2 receptor in muscle regeneration due to the control of proliferation and differentiation of muscle precursor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Muscle regeneration following cardiotoxin injection into WT and B2BKR −/− rectus femoral skeletal muscles.
Fig. 2: Kininogen mRNA transcription and bradykinin secretion into the culture medium during muscle differentiation of C2C12 cells.
Fig. 3: Myoblast differentiation depends on B2BKR activity in vitro and in vivo.
Fig. 4: Analysis of myoblasts, nascent and mature myotubes in C2C12 culture under condition of differentiation and B2BKR inhibition.

Similar content being viewed by others

References

  1. Tschöpe, C., & Westermann, D. (2008). Development of diabetic cardiomyopathy and the kallikrein-kinin system--new insights from B1 and B2 receptor signaling. Biological Chemistry, 389(6), 707–711.

    Article  CAS  PubMed  Google Scholar 

  2. Cruden, N. L. M., & Newby, D. E. (2008). Therapeutic potential of icatibant (HOE-140, JE-049). Expert Opinion on Pharmacotherapy, 9(13), 2383–2390.

    Article  CAS  PubMed  Google Scholar 

  3. Rodi, D., Buzzi, A., Barbieri, M., et al. (2013). Bradykinin B2receptors increase hippocampal excitability and susceptibility to seizures in mice. Neuroscience, 17(/248), 392–402.

    Article  CAS  Google Scholar 

  4. Torres-Rivera, W., Pérez, D., Park, K. Y., et al. (2013). Kinin-B2 receptor exerted neuroprotection after diisopropylfluorophosphate-induced neuronal damage. Neuroscience, 5(/247), 273–279.

    Article  CAS  Google Scholar 

  5. Martins, A. H., Alves, J. M., Perez, D., et al. (2012). Kinin-B2 receptor mediated neuroprotection after NMDA excitotoxicity is reversed in the presence of kinin-B1 receptor agonists. PLoS One, 7(2), 3505.

    Google Scholar 

  6. El-Dahr, S. S., Dipp, S., Meleg-Smith, S., et al. (2000). Fetal ontogeny and role of metanephric bradykinin B2receptors. Pediatric Nephrology, 14(4), 288–296.

    Article  CAS  PubMed  Google Scholar 

  7. Madeddu, P., Emanueli, C., Gaspa, L., et al. (1999). Role of the bradykinin B2 receptor in the maturation of blood pressure phenotype: Lesson from transgenic and knockout mice. Immunopharmacology, 15(/44), 9–13.

    Article  Google Scholar 

  8. Martins, A. H., Alves, J. M., Trujillo, C. A., et al. (2008). Kinin-B2 receptor expression and activity during differentiation of embryonic rat neurospheres. Cytometry. Part A, 73(/4), 361–368.

    Article  CAS  Google Scholar 

  9. Trujillo, C. A., Schwindt, T. T., Martins, A. H., et al. (2009). Novel perspectives of neural stem cell differentiation: From neurotransmitters to therapeutics. Cytometry. Part A, 75(/1), 38–53.

    Article  Google Scholar 

  10. Martins, A. H. B., Resende, R. R., Majumder, P., Faria, M., Casarini, D. E., Tárnok, A., Colli, W., Pesquero, J. B., & Ulrich, H. (2005). Neuronal differentiation of P19 embryonal carcinoma cells modulates kinin B2 receptor gene expression and function. The Journal of Biological Chemistry, 280(/20), 19576–19586.

    Article  CAS  PubMed  Google Scholar 

  11. Trujillo, C. A., Negraes, P. D., Schwindt, T. T., Lameu, C., Carromeu, C., Muotri, A. R., Pesquero, J. B., Cerqueira, D. M., Pillat, M. M., de Souza, H. D. N., Turaça, L. T., Abreu, J. G., & Ulrich, H. (2012). Kinin-B2 receptor activity determines the differentiation fate of neural stem cells. Journal of Biological Chemistry, 287(53), 44046–44061.

    Article  CAS  PubMed  Google Scholar 

  12. Bruno, G., Cencetti, F., Bernacchioni, C., Donati, C., Blankenbach, K. V., Thomas, D., Meyer zu Heringdorf, D., & Bruni, P. (2018). Bradykinin mediates myogenic differentiation in murine myoblasts through the involvement of SK1/Spns2/S1P2axis. Cellular Signalling, 45, 110–121.

    Article  CAS  PubMed  Google Scholar 

  13. Campion, D. R. (1984). The muscle satellite cell: a review. International Review of Cytology, 87, 225–251.

    Article  CAS  PubMed  Google Scholar 

  14. Camillo, A. C., De Carvalho Rocha, R., & Chopard, R. P. (2004). Structural and microvascular study of soleous muscle of Wistar rats after section of the sciatic nerve. Arquivos de Neuro-Psiquiatria, 62, 835–838.

    Article  PubMed  Google Scholar 

  15. Cooper, R. N., Tajbakhsh, S., Mouly, V., et al. (1999). In vivo satellite cell activation via Myf5 and MyoD in regenerating mouse skeletal muscle. Journal of Cell Science, 112(/1), 2895–2901.

    CAS  PubMed  Google Scholar 

  16. Morgan, J. E., & Partridge, T. A. (2003). Muscle satellite cells. The International Journal of Biochemistry & Cell Biology, 35, 1151–1156.

    Article  CAS  Google Scholar 

  17. Bernacchioni, C., Cencetti, F., Ouro, A., Bruno, M., Gomez-Muñoz, A., Donati, C., & Bruni, P. (2018). Lysophosphatidic acid signaling axis mediates ceramide 1-phosphate-induced proliferation of C2C12 myoblasts. International Journal of Molecular Sciences, 19(1), 139.

    Article  CAS  PubMed Central  Google Scholar 

  18. Čamernik, K., Barlič, A., Drobnič, M., Marc, J., Jeras, M., & Zupan, J. (2018). Mesenchymal stem cells in the musculoskeletal system: from animal models to human tissue regeneration? Stem Cell Reviews and Reports, 14, 346–369.

    Article  CAS  Google Scholar 

  19. Siemionow, M., Cwykiel, J., Heydemann, A., Garcia, J., Marchese, E., Siemionow, K., & Szilagyi, E. (2018). Dystrophin expressing chimeric (DEC) human cells provide a potential therapy for Duchenne muscular dystrophy. Stem Cell Reviews and Reports, 14, 370–384.

    Article  CAS  Google Scholar 

  20. Siemionow, M., Cwykiel, J., Heydemann, A., Garcia-Martinez, J., Siemionow, K., & Szilagyi, E. (2018). Creation of dystrophin expressing chimeric cells of myoblast origin as a novel stem cell based therapy for Duchenne muscular dystrophy. Stem Cell Reviews and Reports, 14, 189–199.

    Article  CAS  Google Scholar 

  21. Blau, H. M., Pavlath, G. K., Hardeman, E. C., et al. (1985). Plasticity of the differentiated state. Science, 230, 758–766.

    Article  CAS  PubMed  Google Scholar 

  22. Filigheddu, N., Gnocchi, V. F., Coscia, M., Cappelli, M., Porporato, P. E., Taulli, R., Traini, S., Baldanzi, G., Chianale, F., Cutrupi, S., Arnoletti, E., Ghè, C., Fubini, A., Surico, N., Sinigaglia, F., Ponzetto, C., Muccioli, G., Crepaldi, T., & Graziani, A. (2007). Ghrelin and des-acyl ghrelin promote differentiation and fusion of C2C12 skeletal muscle cells. Molecular Biology of the Cell, 18, 986–994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Burattini, S., Ferri, R., Battistelli, M., et al. (2004). C2C12 murine myoblasts as a model of skeletal muscle development: Morpho-functional characterization. European Journal of Histochemistry, 48(/3), 223–233.

    CAS  PubMed  Google Scholar 

  24. Ulrich, H., Ratajczak, M. Z., Schneider, G., et al. (2018). Kinin and purine signaling contributes to neuroblastoma metastasis. Frontiers in Pharmacology, 9, 500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Abmayr, S. M., & Pavlath, G. K. (2012). Myoblast fusion: lessons from flies and mice. Development, 139, 641–656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cardoso, C. C., Garrett, T., Cayla, C., Meneton, P., Pesquero, J. B., & Bader, M. (2004). Structure and expression of two kininogen genes in mice. Biological Chemistry, 385(3–4), 295–301.

    CAS  PubMed  Google Scholar 

  27. Morais, K. L., Ianzer, D., Miranda, J. R., Melo, R. L., Guerreiro, J. R., Santos, R. A., Ulrich, H., Lameu, C. (2013). Proline rich-oligopeptides: Diverse mechanisms for antihypertensive action. Peptides, 48, 124–133.

    Article  CAS  PubMed  Google Scholar 

  28. Mori, S., & Tokuyama, K. (2007). ACE activity affects myogenic differentiation via mTOR signaling. Biochemical and Biophysical Research Communications, 363(3), 597–602.

    Article  CAS  PubMed  Google Scholar 

  29. Yusuf, F., & Brand-Saberi, B. (2012). Myogenesis and muscle regeneration. Histochemistry and Cell Biology, 138(2), 187–199.

    Article  CAS  PubMed  Google Scholar 

  30. Pillat, M. M., Lameu, C., Trujillo, C. A., Glaser, T., Cappellari, A. R., Negraes, P. D., Battastini, A. M. O., Schwindt, T. T., Muotri, A. R., & Ulrich, H. (2016). Bradykinin promotes neuron-generating division of neural progenitor cells through ERK activation. Journal of Cell Science, 129(/18), 3437–3448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Garry, G. A., Antony, M. L., & Garry, D. J. (2016). Cardiotoxin induced injury and skeletal muscle regeneration. Methods in Molecular Biology (Clifton, N.J.), 1460, 61–71.

    Article  Google Scholar 

  32. Zhu, L. N., Ren, Y., Chen, J. Q., & Wang, Y. Z. (2013). Effects of myogenin on muscle fiber types and key metabolic enzymes in gene transfer mice and C2C12 myoblasts. Gene, 532(2), 246–252.

    Article  CAS  PubMed  Google Scholar 

  33. Paulin, D., & Li, Z. (2004). Desmin: A major intermediate filament protein essential for the structural integrity and function of muscle. Experimental Cell Research, 301(1), 1–7.

    Article  CAS  PubMed  Google Scholar 

  34. Allen, D. L., Harrison, B. C., Sartorius, C., Byrnes, W. C., & Leinwand, L. A. (2001). Mutation of the IIB myosin heavy chain gene results in muscle fiber loss and compensatory hypertrophy. American Journal of Physiology. Cell Physiology, 280(3), C637–C645.

    Article  CAS  PubMed  Google Scholar 

  35. Lyons, G. E., Ontell, M., Cox, R., Sassoon, D., & Buckingham, M. (1990). The expression of myosin genes in developing skeletal muscle in the mouse embryo. Journal of Cell Biology, 111(4), 1465–1476.

    Article  CAS  PubMed  Google Scholar 

  36. Schaffel, R., Rodrigues, M. S., & Assreuy, J. (1991). Potentiation of bradykinin effects and inhibition of kininase activity in isolated smooth muscle. Canadian Journal of Physiology and Pharmacology, 69(7), 904–908.

    Article  CAS  PubMed  Google Scholar 

  37. Minshall, R. D., Erdös, E. G., & Vogel, S. M. (1997). Angiotensin I-converting enzyme inhibitors potentiate bradykinin’s inotropic effects independently of blocking its inactivation. American Journal of Cardiology, 3(80), 132A–136A.

    Article  Google Scholar 

  38. Bains, W., Ponte, P., Blau, H., & Kedes, L. (1984). Cardiac actin is the major actin gene product in skeletal muscle cell differentiation in vitro. Molecular and Cellular Biology, 4(8), 1449–1453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants awarded by Fundação de Amparo à Pesquisa do Estado de São Paulo (São Paulo Research Foundation, FAPESP, Project No. 2012/50880-4) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), Brazil, to H.U. and C.L. (2015/19128-2), by a NIH grant, to A.H.M (8G12MD007600) and by the Universidad Central del Caribe Biomedical Proteomics Facility Grant G12MD007583 awarded to NMB from the NIH National Institute on Minority Health and Health Disparities (NIMHD) RCMI Program.. J.M.A.’s Ph.D. thesis research was funded by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), Brazil. This study was financed by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior -Brazil (CAPES) – Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Ulrich.

Ethics declarations

Conflict of Interest

All authors declare that they do not have conflict of interests of any type to publish the manuscript.

Additional information

Summary statement

A novel function of bradykinin is described for muscle differentiation and repair.

Electronic supplementary material

ESM 1

(DOCX 1.01 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, J.M., Martins, A.H., Lameu, C. et al. Kinin-B2 Receptor Activity in Skeletal Muscle Regeneration and Myoblast Differentiation. Stem Cell Rev and Rep 15, 48–58 (2019). https://doi.org/10.1007/s12015-018-9850-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-018-9850-9

Keywords

Navigation