Stem Cell Reviews and Reports

, Volume 14, Issue 4, pp 535–545 | Cite as

Neonatal overfeeding impairs differentiation potential of mice subcutaneous adipose mesenchymal stem cells

  • Isabelle Dias
  • Ísis Salviano
  • André Mencalha
  • Simone Nunes de Carvalho
  • Alessandra Alves Thole
  • Laís Carvalho
  • Erika Cortez
  • Ana Carolina Stumbo


Nutritional changes in the development (intrauterine life and postnatal period) may trigger long-term pathophysiological complications such as obesity and cardiovascular disease. Metabolic programming leads to organs and tissues modifications, including adipose tissue, with increased lipogenesis, production of inflammatory cytokines, and decreased glucose uptake. However, stem cells participation in adipose tissue dysfunctions triggered by overfeeding during lactation has not been elucidated. Therefore, this study was the first to evaluate the effect of metabolic programming on adipose mesenchymal stem cells (ASC) from mice submitted to overfeeding during lactation, using the litter reduction model. Cells were evaluated for proliferation capacity, viability, immunophenotyping, and reactive oxygen species (ROS) production. The content of UCP-2 and PGC1-α was determined by Western Blot. ASC differentiation potential in adipogenic and osteogenic environments was also evaluated, as well the markers of adipogenic differentiation (PPAR-γ and FAB4) and osteogenic differentiation (osteocalcin) by RT-qPCR. Results indicated that neonatal overfeeding does not affect ASC proliferation, ROS production, and viability. However, differentiation potential and proteins related to metabolism were altered. ASC from overfed group presented increased adipogenic differentiation, decreased osteogenic differentiation, and also showed increased PGC1-α protein content and reduced UCP-2 expression. Thus, ASC may be involved with the increased adiposity observed in neonatal overfeeding, and its therapeutic potential may be affected.


Adipose mesenchymal stem cells Obesity Metabolic programming Perinatal overfeeding Litter size reduction 



This work was supported by Fundação Carlos Chagas Filho de Amparo à Pesquisa do Rio de Janeiro (FAPERJ) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). The authors declare that they have no conflict of interest enrolled in this study.

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest enrolled in this study.


  1. 1.
    Lifshitz, F., & Lifshitz, J. Z. (2014). Globesity: the root causes of the obesity epidemic in the USA and now worldwide. Pediatr Endocrinol Rev, 12, 17–34.PubMedGoogle Scholar
  2. 2.
    Patel, M. S., & Srinivasan, M. (2011). Metabolic programming in the immediate postnatal life. Ann Nutr Metab, 58, 18–28.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Borengasser, S. J., Kang, P., Faske, J., Gomez-Acevedo, H., Blackburn, M. L., Badger, T. M., & Shankar, K. (2014). High fat diet and in utero exposure to maternal obesity disrupts circadian rhythm and leads to metabolic programming of liver in rat offspring. PLoS One.
  4. 4.
    Plagemann, A., Harder, T., Schellong, K., Schulz, S., & Stupin, J. H. (2012). Early postnatal life as a critical time window for determination of long-term metabolic health. Best Pract Res Clin Endocrinol Metab, 26(5), 641–653.CrossRefPubMedGoogle Scholar
  5. 5.
    Weisberg, S. P., McCann, D., Desai, M., Rosenbaum, M., Leibel, R. L., & Ferrante, A. W. (2003). Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest., 112, 1796–1808.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Basinska, K., Marycz, K., Śmieszek, A., & Nicpoń, J. (2015). The production and distribution of IL-6 and TNF-α in subcutaneous adipose tissue and their correlation with serum concentrations in Welsh ponies with equine metabolic syndrome. J Vet Sci., 16(1), 113–120.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Johnson, A. R., Milner, J. J., & Makowski, L. (2012). The inflammation highway: metabolism accelerates inflammatory traffic in obesity. Immunol Rev., 249, 218–238.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Frese, L., Dijkman, P. E., & Hoerstrup, S. P. (2016). Adipose Tissue-Derived Stem Cells in Regenerative Medicine. Transfus Med Hemother, 43, 268–274.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Gimble, J. M., Bunnell, B. A., & Guilak, F. (2012). Human adipose-derived cells: an update on the transition to clinical translation. Regen Med, 7, 225–235.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ammar, H. I., Sequiera, G. L., & Nashed, M. B. e. a. (2015). Comparison of adipose tissue- and bone marrow- derived mesenchymal stem cells for alleviating doxorubicin-induced cardiac dysfunction in diabetic rats. Stem Cell Res Ther, 6, 148.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Abudusaimi, A., Aihemaitijiang, Y., Wang, Y. H., Cui, L., Maimaitiming, S., & Abulikemu, M. (2011). Adipose-derived stem cells enhance bone regeneration in vascular necrosis of the femoral head in the rabbit. J Int Med Res, 39, 1852–1860.CrossRefPubMedGoogle Scholar
  12. 12.
    Lee, W. Y., Park, K. J., Cho, Y. B., & al, e. (2013). Autologous adipose tissue-derived stem cells treatment demonstrated favorable and sustainable therapeutic effect for Crohn's fistula. Stem Cells, 31, 2575–2581.CrossRefPubMedGoogle Scholar
  13. 13.
    Baptista, L. S., Silva, K. R., & Borojevic, R. (2015). Obesity and weight loss could alter the properties of adipose stem cells? World J Stem Cells, 7, 165–173.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Frazier, T. P., Gimble, J. M., Devay, J. W., Tucker, H. A., Chiu, E. S., & Rowan, B. G. (2013). Body mass index affects proliferation and osteogenic differentiation of human subcutaneous adipose tissue-derived stem cells. BMC Cell Biol., 14, 34.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Pérez, L. M., Bernal, A., San Martín, N., Lorenzo, M., Fernández-Veledo, S., & Gálvez, B. G. (2013). Metabolic rescue of obese adipose-derived stem cells by Lin28/Let7 pathway. Diabetes, 62, 2368–2379.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wu, C. L., Diekman, B. O., Jain, D., & Guilak, F. (2013). Diet-induced obesity alters the differentiation potential of stem cells isolated from bone marrow, adipose tissue and infrapatellar fat pad: the effects of free fatty acids. Int J Obes (Lond), 37, 1079–1087.CrossRefGoogle Scholar
  17. 17.
    Kornicka, K., Marycz, K., Tomaszewski, K. A., Marędziak, M., & Śmieszek, A. (2015). The Effect of Age on Osteogenic and Adipogenic Differentiation Potential of Human Adipose Derived Stromal Stem Cells (hASCs) and the Impact of Stress Factors in the Course of the Differentiation Process. Oxidative Medicine and Cellular Longevity.
  18. 18.
    Marycz, K., Kornicka, K., Grzesiak, J., Śmieszek, A., & Szłapka, J. (2016). Macroautophagy and selective mitophagy ameliorate chondrogenic differentiation potential in adipose stem cells of equine metabolic syndrome: new findings in the field of progenitor cells differentiation. Oxidative Medicine and Cellular Longevity.
  19. 19.
    Marycz, K., Kornicka, K., Marędziak, M, Golonka, P., Nicpoń, J. (2016) Equine metabolic syndrome impairs adipose stem cells osteogenic differentiation by predominance of autophagy over selective mitophagy. J Cell Mol Med. (12):2384-2404Google Scholar
  20. 20.
    Granado, M., Fernández, N., Monge, L., et al. (2014) Long-term effects of early overnutrition in the heart of male adult rats: role of the renin-angiotensin system. Plos One, doi:
  21. 21.
    Plagemann, A., Harder, T., Rake, A., et al. (1999). Perinatal elevation of hypothalamic insulin, acquired malformation of hypothalamic galaninergic neurons, and syndrome x–like alterations in adulthood of neonatally overfed rats. Brain Res, 836, 146–155.CrossRefPubMedGoogle Scholar
  22. 22.
    Cunha, A. C., Pereira, R. O., Pereira, M. J., et al. (2009). Long-term effects of overfeeding during lactation on insulin secretion--the role of GLUT-2. J Nutr Biochem, 20(6), 435–442.CrossRefPubMedGoogle Scholar
  23. 23.
    Moreira, A. S., Teixeira Teixeira, M., da Silveira Osso, F., et al. (2009). Left ventricular hypertrophy induced by overnutrition early in life. Nutr Metab Cardiovasc Dis., 19(11), 805–810.CrossRefPubMedGoogle Scholar
  24. 24.
    Hariri, N., & Thibault, L. (2010). High-fat diet-induced obesity in animal models. Nutr Res Rev, 23(2), 270–299.CrossRefPubMedGoogle Scholar
  25. 25.
    Viner, R. M., & Cole, T. J. (2006). Who changes body mass between adolescence and adulthood? Factors predicting change in BMI between 16 year and 30 years in the 1970 British Birth Cohort. Int J Obes (Lond), 30, 1368–1374.CrossRefGoogle Scholar
  26. 26.
    de Oliveira, G.P., Cortez, E., Araujo, et al. (2014) Impaired mitochondrial function and reduced viability in bone marrow cells of obese mice. Cell Tissue Res. 357(1):185-194.Google Scholar
  27. 27.
    Bayne, K. (1996). Revised Guide for the Care and Use of Laboratory Animals available. American Physiological Society. Physiologist, 39(199), 208–211.Google Scholar
  28. 28.
    Lee, M. O. (1929). Determination of the surface area of thewhite rat with application to the expression of metabolic results. Am J Physiol, 89, 24–33.Google Scholar
  29. 29.
    Habbout, A., Li, N., Rochette, L., & Vergely, C. (2013). Postnatal overfeeding in rodents by litter size reduction induces major short- and long-term pathophysiological consequences. J Nutr, 143, 553–562.CrossRefPubMedGoogle Scholar
  30. 30.
    Woo, M., Isganaitis, E., Cerletti, M., Fitzpatrick, C., Wagers, A. J., Jimenez-Chillaron, J., & Patti, M. E. (2011). Early life nutrition modulates muscle stem cell number: implications for muscle mass and repair. Stem Cells Dev, 20, 1763–1769.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Pachón-Peña, G., Serena, C., Ejarque, M., et al. (2016). Obesity Determines the Immunophenotypic Profile and Functional Characteristics of Human Mesenchymal Stem Cells From Adipose Tissue. Stem Cells Transl Med, 5, 464–475.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    McMurray, F., Patten, D. A., & Harper, M. E. (2016). Reactive Oxygen Species and Oxidative Stress in Obesity-Recent Findings and Empirical Approaches. Obesity (Silver Spring), 24, 2301–2310.CrossRefGoogle Scholar
  33. 33.
    Furukawa, S., Fujita, T., Shimabukuro, M., et al. (2004). Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest, 114, 1752–1761.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Conceição, E. P., Franco, J. G., Oliveira, E., et al. (2013). Oxidative stress programming in a rat model of postnatal early overnutrition-role of insulin resistance. J Nutr Biochem, 24, 81–87.CrossRefPubMedGoogle Scholar
  35. 35.
    Sen, S., Domingues, C. C., Rouphael, C., Chou, C., Kim, C., & Yadava, N. (2015). Genetic modification of human mesenchymal stem cells helps to reduce adiposity and improve glucose tolerance in an obese diabetic mouse model. Stem Cell Res Ther, 6, 242.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Denu, R. A., & Hematti, P. (2016). Effects of Oxidative Stress on Mesenchymal Stem Cell Biology. Oxid Med Cell Longev, 2016, 2989076.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Oñate, B., Vilahur, G., Ferrer-Lorente, R., et al. (2012). The subcutaneous adipose tissue reservoir of functionally active stem cells is reduced in obese patients. FASEB J, 26, 4327–4336.CrossRefPubMedGoogle Scholar
  38. 38.
    Roelen, B. A., & Dijke, P. (2003). Controlling mesenchymal stem cell differentiation by TGFBeta family members. J Orthop Sci, 8, 740–748.CrossRefPubMedGoogle Scholar
  39. 39.
    Martinez, B., Soñanez-Organis, J., Godoy-Lugo, J., Horin, L., Crocker, D., & Ortiz, R. (2016). Thyroid hormone stimulated increases in PGC-1α and UCP2 promote life-history specific endocrine changes and maintain a lipid-based metabolism. American Journal of Physiology.
  40. 40.
    Fisler, J. S., & Warden, C. H. (2006). Uncoupling proteins, dietary fat and the metabolic syndrome. Nutr Metab (Lond), 3, 38.CrossRefGoogle Scholar
  41. 41.
    Souza, B. M., Assmann, T. S., Kliemann, L. M., Gross, J. L., Canani, L. H., & Crispim, D. (2011). The role of uncoupling protein 2 (UCP2) on the development of type 2 diabetes mellitus and its chronic complications. Arq Bras Endocrinol Metabol, 55, 239–248.CrossRefPubMedGoogle Scholar
  42. 42.
    Pedersen, S. B., Nyholm, B., Kristensen, K., Nielsen, M. F., Schmitz, O., & Richelsen, B. (2005). Increased adiposity and reduced adipose tissue mRNA expression of uncoupling protein-2 in first-degree relatives of type 2 diabetic patients: evidence for insulin stimulation of UCP-2 and UCP-3 gene expression in adipose tissue. Diabetes Obes Metab, 7, 98–105.CrossRefPubMedGoogle Scholar
  43. 43.
    Gniuli, D., Rosa, G., Manco, M., Scarfone, A., Vega, N., Greco, A. V., Castagneto, M., Vidal, H., & Mingrone, G. (2005). Changes in fat mass influence SREBP-1c and UCP-2 gene expression in formerly obese subjects. Obes Res, 13, 567–573.CrossRefPubMedGoogle Scholar
  44. 44.
    de Oliveira, B. A., de Souza Pinhel, M. A., Nicoletti, C. F., et al. (2016). UCP2 and PLIN1 Expression Affects the Resting Metabolic Rate and Weight Loss on Obese Patients. Obes Surg.
  45. 45.
    Puigserver, P., & Spiegelman, B. M. (2003). Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev, 24, 78–90.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratório de Pesquisa em Células-Tronco, Departamento de Histologia e Embriologia, Instituto de BiologiaUniversidade do Estado do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Laboratório de Biologia do Câncer, Departamento de Biofísica e Biometria, Instituo de BiologiaUniversidade do Estado do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations