Skip to main content
Log in

The Delta Opioid Peptide DADLE Represses Hypoxia-Reperfusion Mimicked Stress Mediated Apoptotic Cell Death in Human Mesenchymal Stem Cells in Part by Downregulating the Unfolded Protein Response and ROS along with Enhanced Anti-Inflammatory Effect

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Hypoxia-reperfusion (H/R) emblems a plethora of pathological conditions which is potent in contributing to the adversities encountered by human mesenchymal stem cells (hMSCs) in post-transplant microenvironment, resulting in transplant failure. D-Alanine 2, Leucine 5 Enkephaline (DADLE)-mediated delta opioid receptor (DOR) activation is well-known for its recuperative properties in different cell types like neuronal and cardiomyocytes. In the current study its effectiveness in assuaging hMSC mortality under H/R-like insult has been delineated. The CoCl2 mimicked H/R conditions in vitro was investigated upon DOR activation, mediated via DADLE. hMSCs loss of viability, reactive oxygen species (ROS) production, inflammatory responses and disconcerted unfolded protein response (UPR) were assessed using AnnexinV/PI flow cytometry, fluorescence imaging, mitochondrial complex 1 assay, quantitative PCR, immunoblot analysis and ELISA. H/R like stress induced apoptosis of hMSCs was significantly mitigated by DADLE via modulation of the apoptotic regulators (Bcl-2/Bax) along with significant curtailment of ROS and mitochondrial complex 1 activity. DADLE concomitantly repressed the misfolded protein aggregation, alongside the major UPR sensors: PERK/BiP/IRE-1α /ATF-6, evoked due to the H/R mimicked endoplasmic reticulum stress. Undermined phosphorylation of the Akt signalling pathway was observed, which concerted its effect onto regulating both the pro and anti-inflammatory cytokines, actuated as a response to the H/R-like insult. The effects of DADLE were subdued by naltrindole (specific DOR antagonist) reaffirming the involvement of DOR in the process. Taken together these results promulgate the role of DADLE-induced DOR activation on improved hMSC survival, which signifies the plausible implications of DOR-activation in cell-transplantation therapies and tissue engineering aspect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1: Characterization of hMSCs.
Fig. 2: Cell viability assessment (MTT) of hMSCs on H/R injury.
Fig. 3: Effect of DOR activation on hMSC survival via DADLE under H/R conditions.
Fig. 4: DADLE-mediated DOR activation curtails the H/R-induced intra-cellular ROS.
Fig. 5: DADLE mediated DOR activation palliates H/R-induced ROS via suppression of the mitochondrial complex 1 activity.
Fig. 6: DADLE mediated DOR activation represses the UPR and corresponding protein aggregation under H/R.
Fig. 7: DADLE mediated DOR activation alters the expression levels of Bcl-2 and Bax under H/R.
Fig. 8: DADLE mediated DOR activation mitigates the phosphorylation of levels of p-Akt and MAPK under H/R.
Fig. 9: DADLE mediated DOR activation regulates the secretion of cytokines (human) in the hMSC-macrophage co-culture supernatants.
Fig. 10: DADLE mediated DOR activation regulates the secretion of cytokines (murine) in the hMSC-macrophage co-culture supernatants
Fig. 11: A concise schematic representation of the hypothesized mechanism of DOR-mediated hMSC survival under H/R

Similar content being viewed by others

Abbreviations

hMSC:

human mesenchymal stem cells

H/R:

Hypoxia-reperfusion

DADLE:

d-Ala2, d-Leu5 enkephalin

DOR:

Delta opioid receptor

ER:

Endoplasmic reticulum

UPR:

Unfolded protein response

CMH2DCFDA:

chloro-methyl derivative 2′,7′-dichlorofluorescein

PERK:

PRKR-like ER kinase

ATF-6:

Activating transcription factor 6α

IRE-1α:

Inositol-requiring protein 1α

BiP:

immunoglobulin heavy-chain binding protein

MAPK:

Mitogen activated protein kinase

References

  1. Parekkadan, B., & Milwid, J. M. (2010). Mesenchymal stem cells as therapeutics. Annu Rev Biomed Eng, 12, 87–117. https://doi.org/10.1146/annurev-bioeng-070909-105309.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Lee, S., Choi, E., Cha, M. J., & Hwang, K. C. (2015). Cell adhesion and long-term survival of transplanted mesenchymal stem cells: a prerequisite for cell therapy. Oxid Med Cell Longev, 2015, 632902. https://doi.org/10.1155/2015/632902.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Murry, C. E., Soonpaa, M. H., Reinecke, H., Nakajima, H., Nakajima, H. O., Rubart, M., Pasumarthi, K. B., Virag, J. I., Bartelmez, S. H., Poppa, V., Bradford, G., Dowell, J. D., Williams, D. A., & Field, L. J. (2004). Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature, 428(6983), 664–668. https://doi.org/10.1038/nature02446.

    Article  PubMed  CAS  Google Scholar 

  4. Eltzschig, H. K., & Eckle, T. (2011). Ischemia and reperfusion--from mechanism to translation. Nature Medicine, 17(11), 1391–1401. https://doi.org/10.1038/nm.2507.

    Article  PubMed  CAS  Google Scholar 

  5. Feng, Y., Hu, L., Xu, Q., Yuan, H., Ba, L., He, Y., & Che, H. (2015). Cytoprotective Role of Alpha-1 Antitrypsin in Vascular Endothelial Cell Under Hypoxia/Reoxygenation Condition. Journal of Cardiovascular Pharmacology, 66(1), 96–107. https://doi.org/10.1097/FJC.0000000000000250.

    Article  PubMed  CAS  Google Scholar 

  6. Yellon, D. M., & Hausenloy, D. J. (2007). Myocardial reperfusion injury. The New England Journal of Medicine, 357(11), 1121–1135.

    Article  PubMed  CAS  Google Scholar 

  7. Kvietys, P. R., & Granger, D. N. (2012). Role of reactive oxygen and nitrogen species in the vascular responses to inflammation. Free Radical Biology & Medicine, 52(3), 556–592. https://doi.org/10.1016/j.freeradbiomed.2011.11.002.

    Article  CAS  Google Scholar 

  8. Qu, K., Shen, N. Y., Xu, X. S., Su, H. B., Wei, J. C., Tai, M. H., Meng, F. D., Zhou, L., Zhang, Y. L., & Liu, C. (2013). Emodin induces human T cell apoptosis in vitro by ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction. Acta Pharmacol Sin, 34(9), 1217–1228. https://doi.org/10.1038/aps.2013.58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Kim, I., Xu, W., & Reed, J. C. (2008). Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nature Reviews. Drug Discovery, 7(12), 1013–1030. https://doi.org/10.1038/nrd2755.

    Article  PubMed  CAS  Google Scholar 

  10. Minamino, T., Komuro, I., & Kitakaze, M. (2010). Endoplasmic reticulum stress as a therapeutic target in cardiovascular disease. Circulation Research, 107(9), 1071–1082. https://doi.org/10.1038/aps.2015.

    Article  PubMed  CAS  Google Scholar 

  11. Toko, H., Takahashi, H., Kayama, Y., Okada, S., Minamino, T., Terasaki, F., Kitaura, Y., & Komuro, I. (2010). ATF6 is important under both pathological and physiological states in the heart. Journal of Molecular and Cellular Cardiology, 49(1), 113–120. https://doi.org/10.1016/j.yjmcc.2010.03.020.

    Article  PubMed  CAS  Google Scholar 

  12. Grover, G. J., Atwal, K. S., Sleph, P. G., Wang, F. L., Monshizadegan, H., Monticello, T., & Green, D. W. (2004). Excessive ATP hydrolysis in ischemic myocardium by mitochondrial F1F0-ATPase: effect of selective pharmacological inhibition of mitochondrial ATPase hydrolase activity. American Journal of Physiology. Heart and Circulatory Physiology, 287(4), H1747–H1755. https://doi.org/10.1152/ajpheart.01019.2003.

    Article  PubMed  CAS  Google Scholar 

  13. Solaini, G., & Harris, D. A. (2005). Biochemical dysfunction in heart mitochondria exposed to ischaemia and reperfusion. The Biochemical Journal, 390(Pt 2), 377–394. https://doi.org/10.1042/BJ20042006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Xu, M., Bi, X., He, X., Yu, X., Zhao, M., & Zang, W. (2016). Inhibition of the mitochondrial unfolded protein response by acetylcholine alleviated hypoxia/reoxygenation-induced apoptosis of endothelial cells. Cell Cycle, 15(10), 1331–1343. https://doi.org/10.1080/15384101.2016.1160985.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Ong, S. B., & Gustafsson, A. B. (2012). New roles for mitochondria in cell death in the reperfused myocardium. Cardiovascular Research, 94(2), 190–196. https://doi.org/10.1093/cvr/cvr312.

    Article  PubMed  CAS  Google Scholar 

  16. Satoh, M., & Minami, M. (1995). Molecular pharmacology of the opioid receptors. Pharmacology & Therapeutics, 68(3), 343–364.

    Article  CAS  Google Scholar 

  17. Tian, X., Guo, J., Zhu, M., Li, M., Wu, G., & Xia, Y. (2013). delta-Opioid receptor activation rescues the functional TrkB receptor and protects the brain from ischemia-reperfusion injury in the rat. PLoS One, 8(7), e69252. https://doi.org/10.1371/journal.pone.0069252PONE-D-11-22093.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Tanaka, K., Kersten, J. R., & Riess, M. L. (2014). Opioid-induced cardioprotection. Curr Pharm Des, 20(36), 5696–5705.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Crowley MG, Liska MG, Lippert T, Coreya S, Borlongan CV (2017) Utilizing Delta Opioid Receptors and Peptides for Cytoprotection: Implications in Stroke and Other Neurological Disorders. CNS Neurol Disord Drug Targets. https://doi.org/10.2174/1871527316666170320150659

  20. Kaneko, Y., Tajiri, N., Su, T. P., Wang, Y., & Borlongan, C. V. (2012). Combination treatment of hypothermia and mesenchymal stromal cells amplifies neuroprotection in primary rat neurons exposed to hypoxic-ischemic-like injury in vitro: role of the opioid system. PLoS One, 7(10), e47583. https://doi.org/10.1371/journal.pone.0047583PONE-D-12-14071.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Mullick, M., Venkatesh, K., & Sen, D. (2017). d-Alanine 2, Leucine 5 Enkephaline (DADLE)-mediated DOR activation augments human hUCB-BFs viability subjected to oxidative stress via attenuation of the UPR. Stem Cell Research, 22, 20–28. https://doi.org/10.1016/j.scr.2017.05.009.

    Article  PubMed  CAS  Google Scholar 

  22. Reddy, L. V. K., & Sen, D. (2017). DADLE enhances viability and anti-inflammatory effect of human MSCs subjected to 'serum free' apoptotic condition in part via the DOR/PI3K/AKT pathway. Life Sciences, 191, 195–204. https://doi.org/10.1016/j.lfs.2017.10.024.

    Article  PubMed  CAS  Google Scholar 

  23. Jaiswal, N., Haynesworth, S. E., Caplan, A. I., & Bruder, S. P. (1997). Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem, 64(2), 295–312. https://doi.org/10.1002/(SICI)1097-4644(199702)64:2<295::AID-JCB12>3.0.CO;2-I.

    Article  PubMed  CAS  Google Scholar 

  24. Nakamura, T., Shiojima, S., Hirai, Y., Iwama, T., Tsuruzoe, N., Hirasawa, A., Katsuma, S., & Tsujimoto, G. (2003). Temporal gene expression changes during adipogenesis in human mesenchymal stem cells. Biochemical and Biophysical Research Communications, 303(1), 306–312. https://doi.org/10.1016/S0006-291X(03)00325-5.

    Article  PubMed  CAS  Google Scholar 

  25. Lopez-Sanchez, L. M., Jimenez, C., Valverde, A., Hernandez, V., Penarando, J., Martinez, A., Lopez-Pedrera, C., Munoz-Castaneda, J. R., De la Haba-Rodriguez, J. R., Aranda, E., & Rodriguez-Ariza, A. (2014). CoCl2, a mimic of hypoxia, induces formation of polyploid giant cells with stem characteristics in colon cancer. PLoS One, 9(6), e99143. https://doi.org/10.1371/journal.pone.0099143PONE-D-14-14287.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhang, Y. B., Wang, X., Meister, E. A., Gong, K. R., Yan, S. C., Lu, G. W., Ji, X. M., & Shao, G. (2014). The effects of CoCl2 on HIF-1alpha protein under experimental conditions of autoprogressive hypoxia using mouse models. International Journal of Molecular Sciences, 15(6), 10999–11012. https://doi.org/10.3390/ijms150610999.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Sen, D., Huchital, M., & Chen, Y. L. (2013). Crosstalk between delta opioid receptor and nerve growth factor signaling modulates neuroprotection and differentiation in rodent cell models. International Journal of Molecular Sciences, 14(10), 21114–21139. https://doi.org/10.3390/ijms141021114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Wen, A., Guo, A., & Chen, Y. L. (2013). Mu-opioid signaling modulates biphasic expression of TrkB and IkappaBalpha genes and neurite outgrowth in differentiating and differentiated human neuroblastoma cells. Biochemical and Biophysical Research Communications, 432(4), 638–642. https://doi.org/10.1016/j.bbrc.2013.02.031.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Fang, S., Xu, H., Lu, J., Zhu, Y., & Jiang, H. (2013). Neuroprotection by the kappa-opioid receptor agonist, BRL52537, is mediated via up-regulating phosphorylated signal transducer and activator of transcription-3 in cerebral ischemia/reperfusion injury in rats. Neurochemical Research, 38(11), 2305–2312. https://doi.org/10.1007/s11064-013-1139-4.

    Article  PubMed  CAS  Google Scholar 

  30. Delgado-Camprubi, M., Esteras, N., Soutar, M. P., Plun-Favreau, H., & Abramov, A. Y. (2017). Deficiency of Parkinson's disease-related gene Fbxo7 is associated with impaired mitochondrial metabolism by PARP activation. Cell Death and Differentiation, 24(1), 120–131. https://doi.org/10.1038/cdd.2016.104.

    Article  PubMed  CAS  Google Scholar 

  31. Xin, G., Wei, Z., Ji, C., Zheng, H., Gu, J., Ma, L., Huang, W., Morris-Natschke, S. L., Yeh, J. L., Zhang, R., Qin, C., Wen, L., Xing, Z., Cao, Y., Xia, Q., Lu, Y., Li, K., Niu, H., & Lee, K. H. (2016). Metformin Uniquely Prevents Thrombosis by Inhibiting Platelet Activation and mtDNA Release. Science Reporter, 6, 36222. https://doi.org/10.1038/srep36222.

    Article  CAS  Google Scholar 

  32. Fischer, T., Elenko, E., McCaffery, J. M., DeVries, L., & Farquhar, M. G. (1999). Clathrin-coated vesicles bearing GAIP possess GTPase-activating protein activity in vitro. Proceedings of the National Academy of Sciences of the United States of America, 96(12), 6722–6727.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Sarugaser, R., Hanoun, L., Keating, A., Stanford, W. L., & Davies, J. E. (2009). Human mesenchymal stem cells self-renew and differentiate according to a deterministic hierarchy. PLoS One, 4(8), e6498. https://doi.org/10.1371/journal.pone.0006498.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Li, C. D., Zhang, W. Y., Li, H. L., Jiang, X. X., Zhang, Y., Tang, P. H., & Mao, N. (2005). Mesenchymal stem cells derived from human placenta suppress allogeneic umbilical cord blood lymphocyte proliferation. Cell Research, 15(7), 539–547. https://doi.org/10.1038/sj.cr.7290323.

    Article  PubMed  CAS  Google Scholar 

  35. Singh, A., & Sen, D. (2016). Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010-2015). Stem Cell Res Ther, 7(1), 82. https://doi.org/10.1186/s13287-016-0341-0.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Saraswati, S., Guo, Y., Atkinson, J., & Young, P. P. (2015). Prolonged hypoxia induces monocarboxylate transporter-4 expression in mesenchymal stem cells resulting in a secretome that is deleterious to cardiovascular repair. Stem Cells, 33(4), 1333–1344. https://doi.org/10.1002/stem.1935.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Chouchani, E. T., Pell, V. R., Gaude, E., Aksentijevic, D., Sundier, S. Y., Robb, E. L., Logan, A., Nadtochiy, S. M., Ord, E. N., Smith, A. C., Eyassu, F., Shirley, R., Hu, C. H., Dare, A. J., James, A. M., Rogatti, S., Hartley, R. C., Eaton, S., Costa, A. S., Brookes, P. S., Davidson, S. M., Duchen, M. R., Saeb-Parsy, K., Shattock, M. J., Robinson, A. J., Work, L. M., Frezza, C., Krieg, T., & Murphy, M. P. (2014). Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature, 515(7527), 431–435. https://doi.org/10.1038/nature13909.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Kalogeris, T., Baines, C. P., Krenz, M., & Korthuis, R. J. (2012). Cell biology of ischemia/reperfusion injury. International Review of Cell and Molecular Biology, 298, 229–317. https://doi.org/10.1016/B978-0-12-394309-5.00006-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Kalogeris, T., Bao, Y., & Korthuis, R. J. (2014). Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox Biology, 2, 702–714. https://doi.org/10.1016/j.redox.2014.05.006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Mahfoudh-Boussaid, A., Zaouali, M. A., Hauet, T., Hadj-Ayed, K., Miled, A. H., Ghoul-Mazgar, S., Saidane-Mosbahi, D., Rosello-Catafau, J., & Ben Abdennebi, H. (2012). Attenuation of endoplasmic reticulum stress and mitochondrial injury in kidney with ischemic postconditioning application and trimetazidine treatment. Journal of Biomedical Science, 19, 71. https://doi.org/10.1186/1423-0127-19-71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Chen, J., Crawford, R., Chen, C., & Xiao, Y. (2013). The key regulatory roles of the PI3K/Akt signaling pathway in the functionalities of mesenchymal stem cells and applications in tissue regeneration. Tissue Eng Part B Rev, 19(6), 516–528. https://doi.org/10.1089/ten.TEB.2012.0672.

    Article  PubMed  CAS  Google Scholar 

  42. Hamel, D., Sanchez, M., Duhamel, F., Roy, O., Honore, J. C., Noueihed, B., Zhou, T., Nadeau-Vallee, M., Hou, X., Lavoie, J. C., Mitchell, G., Mamer, O. A., & Chemtob, S. (2014). G-protein-coupled receptor 91 and succinate are key contributors in neonatal postcerebral hypoxia-ischemia recovery. Arteriosclerosis, Thrombosis, and Vascular Biology, 34(2), 285–293. https://doi.org/10.1161/ATVBAHA.113.302131.

    Article  PubMed  CAS  Google Scholar 

  43. Zheng, Z., & Yenari, M. A. (2004). Post-ischemic inflammation: molecular mechanisms and therapeutic implications. Neurological Research, 26(8), 884–892. https://doi.org/10.1179/016164104X2357.

    Article  PubMed  CAS  Google Scholar 

  44. Gnecchi, M., Zhang, Z., Ni, A., & Dzau, V. J. (2008). Paracrine mechanisms in adult stem cell signaling and therapy. Circulation Research, 103(11), 1204–1219. https://doi.org/10.1161/CIRCRESAHA.108.176826.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Chavakis, E., Urbich, C., & Dimmeler, S. (2008). Homing and engraftment of progenitor cells: a prerequisite for cell therapy. Journal of Molecular and Cellular Cardiology, 45(4), 514–522. https://doi.org/10.1016/j.yjmcc.2008.01.004.

    Article  PubMed  CAS  Google Scholar 

  46. Ingber, D. E. (2002). Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circulation Research, 91(10), 877–887.

    Article  PubMed  CAS  Google Scholar 

  47. Wang, J. A., Chen, T. L., Jiang, J., Shi, H., Gui, C., Luo, R. H., Xie, X. J., Xiang, M. X., & Zhang, X. (2008). Hypoxic preconditioning attenuates hypoxia/reoxygenation-induced apoptosis in mesenchymal stem cells. Acta Pharmacologica Sinica, 29(1), 74–82. https://doi.org/10.1111/j.1745-7254.2008.00716.x.

    Article  PubMed  CAS  Google Scholar 

  48. Peng, G., Yuan, Y., He, Q., Wu, W., & Luo, B. Y. (2011). MicroRNA let-7e regulates the expression of caspase-3 during apoptosis of PC12 cells following anoxia/reoxygenation injury. Brain Research Bulletin, 86(3-4), 272–276. https://doi.org/10.1016/j.brainresbull.2011.07.017.

    Article  PubMed  CAS  Google Scholar 

  49. Konstantinidis, K., Whelan, R. S., & Kitsis, R. N. (2012). Mechanisms of cell death in heart disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(7), 1552–1562. https://doi.org/10.1161/ATVBAHA.111.224915.

    Article  PubMed  CAS  Google Scholar 

  50. Okada, K., Minamino, T., Tsukamoto, Y., Liao, Y., Tsukamoto, O., Takashima, S., Hirata, A., Fujita, M., Nagamachi, Y., Nakatani, T., Yutani, C., Ozawa, K., Ogawa, S., Tomoike, H., Hori, M., & Kitakaze, M. (2004). Prolonged endoplasmic reticulum stress in hypertrophic and failing heart after aortic constriction: possible contribution of endoplasmic reticulum stress to cardiac myocyte apoptosis. Circulation, 110(6), 705–712. https://doi.org/10.1161/01.CIR.0000137836.95625.D4.

    Article  PubMed  Google Scholar 

  51. Martindale, J. J., Fernandez, R., Thuerauf, D., Whittaker, R., Gude, N., Sussman, M. A., & Glembotski, C. C. (2006). Endoplasmic reticulum stress gene induction and protection from ischemia/reperfusion injury in the hearts of transgenic mice with a tamoxifen-regulated form of ATF6. Circulation Research, 98(9), 1186–1193. https://doi.org/10.1161/01.RES.0000220643.65941.8d.

    Article  PubMed  CAS  Google Scholar 

  52. Yamamoto, K., Sato, T., Matsui, T., Sato, M., Okada, T., Yoshida, H., Harada, A., & Mori, K. (2007). Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1. Developmental Cell, 13(3), 365–376. https://doi.org/10.1016/j.devcel.2007.07.018.

    Article  PubMed  CAS  Google Scholar 

  53. Chen, J. (2011). Multiple signal pathways in obesity-associated cancer. Obes Rev, 12(12), 1063–1070. https://doi.org/10.1111/j.1467-789X.2011.00917.x.

    Article  PubMed  CAS  Google Scholar 

  54. Tautenhahn, H. M., Bruckner, S., Uder, C., Erler, S., Hempel, M., von Bergen, M., Brach, J., Winkler, S., Pankow, F., Gittel, C., Baunack, M., Lange, U., Broschewitz, J., Dollinger, M., Bartels, M., Pietsch, U., Amann, K., & Christ, B. (2017). Mesenchymal stem cells correct haemodynamic dysfunction associated with liver injury after extended resection in a pig model. Science Reporter, 7(1), 2617. https://doi.org/10.1038/s41598-017-02670-8.

    Article  CAS  Google Scholar 

  55. Wise, A. F., Williams, T. M., Kiewiet, M. B., Payne, N. L., Siatskas, C., Samuel, C. S., & Ricardo, S. D. (2014). Human mesenchymal stem cells alter macrophage phenotype and promote regeneration via homing to the kidney following ischemia-reperfusion injury. American Journal of Physiology. Renal Physiology, 306(10), F1222–F1235. https://doi.org/10.1152/ajprenal.00675.2013.

    Article  PubMed  CAS  Google Scholar 

  56. Eggenhofer, E., & Hoogduijn, M. J. Mesenchymal stem cell-educated macrophages. Transplant Research, 1(1), 12. https://doi.org/10.1186/2047-1440-1-12.

  57. Lim, J. Y., Im, K. I., Lee, E. S., Kim, N., Nam, Y. S., Jeon, Y. W., & Cho, S. G. (2016). Enhanced immunoregulation of mesenchymal stem cells by IL-10-producing type 1 regulatory T cells in collagen-induced arthritis. Science Reporter, 6, 26851. https://doi.org/10.1038/srep26851.

  58. Hou, Y., Ryu, C. H., Jun, J. A., Kim, S. M., Jeong, C. H., & Jeun, S. S. (2014). IL-8 enhances the angiogenic potential of human bone marrow mesenchymal stem cells by increasing vascular endothelial growth factor. Cell Biology International, 38(9), 1050–1059. https://doi.org/10.1002/cbin.10294.

    Article  PubMed  CAS  Google Scholar 

  59. Bernardo, M. E., & Fibbe, W. E. (2013). Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell, 13(4), 392–402. https://doi.org/10.1016/j.stem.2013.09.006z.

    Article  PubMed  CAS  Google Scholar 

  60. Kyurkchiev, D., Bochev, I., Ivanova-Todorova, E., Mourdjeva, M., Oreshkova, T., Belemezova, K., & Kyurkchiev, S. (2014). Secretion of immunoregulatory cytokines by mesenchymal stem cells. World Journal Stem Cells, 6(5), 552–570. https://doi.org/10.4252/wjsc.v6.i5.552.

    Article  Google Scholar 

Download references

Acknowledgements

Centre for Stem Cell Research, Christian Medical College, Vellore, India for providing access to flow cytometry and fluorescence microscope.

Funding

This work was supported by a start-up fund from VIT, Vellore given to DS. DS is also supported by a Indian Council of Medical Research (ICMR) Funded Project (Sanction Order No.NCD/Ad-hoc/66/2016–17) and a ‘Fast Track Young Scientist’ grant (YSS/2014/000027) from the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India.

Author information

Authors and Affiliations

Authors

Contributions

MM has carried out experiments, analyzed data and wrote the paper. DS conceptualized, wrote the paper and analysed the data.

Corresponding author

Correspondence to Dwaipayan Sen.

Ethics declarations

Competing Interests

The authors declare that there are no conflicts of interest.

Consent for Publication

All authors have read the manuscript and agreed to the publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mullick, M., Sen, D. The Delta Opioid Peptide DADLE Represses Hypoxia-Reperfusion Mimicked Stress Mediated Apoptotic Cell Death in Human Mesenchymal Stem Cells in Part by Downregulating the Unfolded Protein Response and ROS along with Enhanced Anti-Inflammatory Effect. Stem Cell Rev and Rep 14, 558–573 (2018). https://doi.org/10.1007/s12015-018-9810-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-018-9810-4

Keywords

Navigation