Mesenchymal Stem Cells in the Musculoskeletal System: From Animal Models to Human Tissue Regeneration?

Article

Abstract

The musculoskeletal system includes tissues that have remarkable regenerative capabilities. Bone and muscle sustain micro-damage throughout the lifetime, yet they continue to provide the body with the support that is needed for everyday activities. Our current understanding is that the regenerative capacity of the musculoskeletal system can be attributed to the mesenchymal stem/ stromal cells (MSCs) that reside within its different anatomical compartments. These MSCs can replenish various tissues with progenitor cells to form functional cells, such as osteoblasts, chondrocytes, myocytes, and others. However, with aging and in certain disorders of the musculoskeletal system such as osteoarthritis or osteoporosis, this regenerative capacity of MSCs appears to be lost or diverted for the production of other non-functional cell types, such as adipocytes and fibroblasts. In this review, we shed light on the tissue sources and subpopulations of MSCs in the musculoskeletal system that have been identified in animal models, discuss the mechanisms of their anti-inflammatory action as a prerequisite for their tissue regeneration and their current applications in regenerative medicine. While providing up-to-date evidence of the role of MSCs in different musculoskeletal pathologies, in particular in osteoporosis and osteoarthritis, we share some thoughts on their potential as diagnostic markers in musculoskeletal health and disease.

Keywords

Musculoskeletal system Mesenchymal stem cells Bone Muscles Synovium Regenerative medicine Osteoarthritis Osteoporosis 

Notes

Acknowledgements

The authors acknowledge Chris Berrie for scientific English editing of the manuscript. J. Zupan was funded by UK Arthritis Research as a Postdoctoral Research Fellow at the University of Aberdeen (2014–2016) and by P3-0298 research program of Slovenian Research Agency (2009–2014 and since 2016) as Researcher at the University of Ljubljana. Figures were created using the Mind the Graph platform (http://www.mindthegraph.com).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Walmsley, G. G., Ransom, R. C., Zielins, E. R., et al. (2015). Stem cells in bone regeneration. Stem Cell Reviews and Reports.  https://doi.org/10.1007/s12015-016-9665-5.Google Scholar
  2. 2.
    Tedesco, F. S., Dellavalle, A., Diaz-Manera, J., Messina, G., & Cossu, G. (2010). Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells. Journal of Clinical Investigation.  https://doi.org/10.1172/JCI40373.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Friedenstein, A. J., Chailakhjan, R. K., & Lalykina, K. S. (1970). The development of a fibroblast colonies in monolayer cultures of guinea pig bone marrow and spleen cells. Cell Proliferation.  https://doi.org/10.1111/j.1365-2184.1970.tb00347.x.Google Scholar
  4. 4.
    Pittenger, M., Mackay, A., Beck, S., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science.  https://doi.org/10.1126/science.284.5411.143.PubMedGoogle Scholar
  5. 5.
    Hass, R., Kasper, C., Böhm, S., & Jacobs, R. (2011). Different populations and sources of human mesenchymal stem cells (MSCs): a comparison of adult and neonatal tissue-derived MSC. Cell Communication and Signaling: CCS.  https://doi.org/10.1186/1478-811X-9-12.Google Scholar
  6. 6.
    Grcevic, D., Pejda, S., Matthews, B. G., et al. (2012). In vivo fate mapping identifies mesenchymal progenitor cells. Stem Cells.  https://doi.org/10.1002/stem.780.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Tuli, R., Seghatoleslami, M. R., Tuli, S., et al. (2003). A simple, high-yield method for obtaining multipotential mesenchymal progenitor cells from trabecular bone. Molecular Biotechnology.  https://doi.org/10.1385/MB:23:1:37.PubMedGoogle Scholar
  8. 8.
    Worthley, D. L., Churchill, M., Compton, J. T., et al. (2015). Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential. Cell.  https://doi.org/10.1016/j.cell.2014.11.042.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Méndez-Ferrer, S., Michurina, T. V., Ferraro, F., et al. (2010). Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature.  https://doi.org/10.1038/nature09262.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhou, B. O., Yue, R., Murphy, M. M., Peyer, J. G., & Morrison, S. J. (2014). Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell.  https://doi.org/10.1016/j.stem.2014.06.008.Google Scholar
  11. 11.
    Chan, C. K. F., Seo, E. Y., Chen, J. Y., et al. (2015). Identification and specification of the mouse skeletal stem cell. Cell.  https://doi.org/10.1016/j.cell.2014.12.002.Google Scholar
  12. 12.
    De Bari, C., Dell’Accio, F., Tylzanowski, P., Luyten, F. P. (2001) Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis and Rheumatism,  https://doi.org/10.1002/1529-0131(200108)44:8<1928::AID-ART331>3.0.CO;2-P Google Scholar
  13. 13.
    Sakaguchi, Y., Sekiya, I., Yagishita, K., & Muneta, T. (2005). Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis and Rheumatism.  https://doi.org/10.1002/art.21212.PubMedGoogle Scholar
  14. 14.
    Roelofs, A. J., Zupan, J., Riemen, A. H. K., et al. (2017). Joint morphogenetic cells in the adult synovium. Nature Communications.  https://doi.org/10.1038/ncomms15040.Google Scholar
  15. 15.
    Kurth, T. B., Dell’Accio, F., Crouch, V., Augello, A., Sharpe, P. T., & De Bari, C. (2011). Functional mesenchymal stem cell niches in adult mouse knee joint synovium in vivo. Arthritis and Rheumatism.  https://doi.org/10.1002/art.30234.PubMedGoogle Scholar
  16. 16.
    Tan, Q., Lui, P. P., Rui, Y. F., & Wong, Y. M. (2012). Comparison of potentials of stem cells isolated from tendon and bone marrow for musculoskeletal tissue engineering. Tissue Engineering Part A.  https://doi.org/10.1089/ten.TEA.2011.0362.Google Scholar
  17. 17.
    Lui, P. P. (2015). Markers for the identification of tendon-derived stem cells in vitro and tendon stem cells in situ – update and future development. Stem Cell Research & Therapy.  https://doi.org/10.1186/s13287-015-0097-y.Google Scholar
  18. 18.
    Sienkiewicz, D., Kulak, W., Okurowska-Zawada, B., Paszko-Patej, G., Kawnik, K (2015). Duchenne muscular dystrophy: current cell therapies. Therapeutic Advances in Neurological Disorders.  https://doi.org/10.1177/1756285615586123.PubMedPubMedCentralGoogle Scholar
  19. 19.
    De Bari, C., Dell’Accio, F., Vandenabeele, F., Vermeesch, J. R., Raymackers, J. M., & Luyten, F. P. (2003). Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. The Journal of Cell Biology.  https://doi.org/10.1083/jcb.200212064.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Chen, C., Qu, Z., Yin, X., et al. (2016). Efficacy of umbilical cord-derived mesenchymal stem cell-based therapy for osteonecrosis of the femoral head: a three-year follow-up study. Molecular Medicine Reports.  https://doi.org/10.3892/mmr.2016.5745.Google Scholar
  21. 21.
    Daltro, G. C., Fortuna, V., de Souza, E. S., et al. (2012). Efficacy of autologous stem cell-based therapy for osteonecrosis of the femoral head in sickle cell disease: a five-year follow-up study. Stem Cell Research & Therapy.  https://doi.org/10.1186/s13287-015-0105-2.Google Scholar
  22. 22.
    Aoyama, T., Goto, K., Kakinoki, R., et al. (2014). An exploratory clinical trial for idiopathic osteonecrosis of femoral head by cultured autologous multipotent mesenchymal stromal cells augmented with vascularized bone grafts. Tissue Engineering Part B.  https://doi.org/10.1089/ten.teb.2014.0090.Google Scholar
  23. 23.
    Rastogi, S., Sankineani, S. R., Nag, H. L., et al. (2013). Intralesional autologous mesenchymal stem cells in management of osteonecrosis of femur: a preliminary study. Musculoskeletal Surgery.  https://doi.org/10.1007/s12306-013-0273-0.PubMedGoogle Scholar
  24. 24.
    Zhao, D., Cui, D., Wang, B., et al. (2012). Treatment of early stage osteonecrosis of the femoral head with autologous implantation of bone marrow-derived and cultured mesenchymal stem cells. Bone.  https://doi.org/10.1016/j.bone.2011.11.002.Google Scholar
  25. 25.
    Weel, H., Mallee, W. H., van Dijk, C. N., et al. (2015). The effect of concentrated bone marrow aspirate in operative treatment of fifth metatarsal stress fractures; a double-blind randomized controlled trial. BMC Musculoskeletal Disorders.  https://doi.org/10.1186/s12891-015-0649-4.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Wong, K. L., Lee, K. B., Tai, B. C., Law, P., Lee, E. H., & Hui, J. H. (2013). Injectable cultured bone marrow-derived mesenchymal stem cells in varus knees with cartilage defects undergoing high tibial osteotomy: a prospective, randomized controlled clinical trial with two years’ follow-up. Arthroscopy.  https://doi.org/10.1016/j.arthro.2013.09.074.Google Scholar
  27. 27.
    Pers, Y.-M., Rackwitz, L., Ferreira, R., et al. (2016). Adipose mesenchymal stromal cell-based therapy for severe osteoarthritis of the knee: a phase I dose-escalation trial. Stem Cells Translational Medicine.  https://doi.org/10.5966/sctm.2015-0245.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Orozco, L., Munar, A., Soler, R., et al. (2013). Treatment of knee osteoarthritis with autologous mesenchymal stem cells. Transplantation.  https://doi.org/10.1097/TP.0b013e318291a2da.PubMedGoogle Scholar
  29. 29.
    Freitag, J., Ford, J., Bates, D., et al. (2015). Adipose derived mesenchymal stem cell therapy in the treatment of isolated knee chondral lesions: design of a randomised controlled pilot study comparing arthroscopic microfracture versus arthroscopic microfracture combined with postoperative mesenchymal. British Medical Journal Open.  https://doi.org/10.1136/bmjopen-2015-009332.Google Scholar
  30. 30.
    Jo, C., Lee, Y., & Shin, W. (2014). Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells.  https://doi.org/10.1002/stem.1634.Google Scholar
  31. 31.
    Davatchi, F., Sadeghi Abdollahi, B., Mohyeddin, M., Nikbin, B. (2016). Mesenchymal stem cell therapy for knee osteoarthritis: five years follow-up of three patients. International Journal Rheumatic Diseases.  https://doi.org/10.1111/1756-185X.12670.Google Scholar
  32. 32.
    Davatchi, F., Abdollahi, B. S., Mohyeddin, M., Shahram, F., & Nikbin, B. (2011). Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients. International Journal Rheumatic Diseases.  https://doi.org/10.1111/j.1756-185X.2011.01599.x.Google Scholar
  33. 33.
    Vega, A., Martín-Ferrero, M. A., Del Canto, F., et al. (2015). Treatment of knee osteoarthritis with allogeneic bone marrow mesenchymal stem cells. Transplantation.  https://doi.org/10.1097/TP.0000000000000678.PubMedGoogle Scholar
  34. 34.
    Vangsness, C. T., Farr, J., Boyd, J., Dellaero, D. T., Mills, C. R., & LeRoux-Williams, M. (2014). Adult human mesenchymal stem cells delivered via intra-articular injection to the knee following partial medial menisectomy. The Journal of Bone and Joint Surgery.  https://doi.org/10.2106/JBJS.M.00058.PubMedGoogle Scholar
  35. 35.
    Centeno, C. J., Al-Sayegh, H., Bashir, J., Goodyear, S. H., & Freeman, M. D. (2015). A prospective multi-Site registry study of a specific protocol of autologous bone marrow concentrate for the treatment of shoulder rotator cuff tears and osteoarthritis. Journal of Pain Research.  https://doi.org/10.2147/JPR.S80872.Google Scholar
  36. 36.
    Centeno, C. J., Busse, D., Kisiday, J., et al. (2008). Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells. Pain Physician, 11(3), 343–353.PubMedGoogle Scholar
  37. 37.
    Akgun, I., Unlu, M. C., Erdal, O. A., et al. (2015). Matrix-induced autologous mesenchymal stem cell implantation versus matrix-induced autologous chondrocyte implantation in the treatment of chondral defects of the knee: a 2-year randomized study. Archives of Orthopaedic and Trauma Surgery.  https://doi.org/10.1007/s00402-014-2136-z.PubMedGoogle Scholar
  38. 38.
    Koh, Y.-G., Kwon, O.-R., Kim, Y.-S., Choi, Y.-J., & Tak, D.-H. (2016). Adipose-derived mesenchymal stem cells with microfracture versus microfracture alone: two-year follow-up of a prospective randomized trial. Arthroscopy.  https://doi.org/10.1016/j.arthro.2015.09.010.Google Scholar
  39. 39.
    Chamberlain, C. S., Saether, E. E., Aktas, E., & Vanderby, R. (2017). Mesenchymal stem cell therapy on tendon/ ligament healing. Journal of Cytokine Biology, 2(1), 112.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Lee, S. Y., Kim, W., Lim, C., & Chung, S. G. (2015). Treatment of lateral epicondylosis by using allogenic adipose-derived mesenchymal stem cells: a pilot study. Stem Cells.  https://doi.org/10.1002/stem.2110.Google Scholar
  41. 41.
    Kim, S. J., Song, D. H., Park, J. W., Park, S., & Kim, S. J. (2017). Effect of bone marrow aspirate concentrate-platelet-rich plasma on tendon-derived stem cells and rotator cuff tendon tear. Cell Transplantation.  https://doi.org/10.3727/096368917X694705.Google Scholar
  42. 42.
    Alsalameh, S., Amin, R., Gemba, T., & Lotz, M. (2004). Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis and Rheumatism.  https://doi.org/10.1002/art.20269.PubMedGoogle Scholar
  43. 43.
    Pretzel, D., Linss, S., Rochler, S., et al. (2011). Relative percentage and zonal distribution of mesenchymal progenitor cells in human osteoarthritic and normal cartilage. Arthritis Research and Therapy.  https://doi.org/10.1186/ar3320.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Williams, R., Khan, I. M., Richardson, K., et al. (2010). Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage. PLoS One.  https://doi.org/10.1371/journal.pone.0013246.Google Scholar
  45. 45.
    Sacchetti, B., Funari, A., Remoli, C., et al. (2016). No identical “mesenchymal stem cells” at different times and sites: human committed progenitors of distinct origin and differentiation potential are incorporated as adventitial cells in microvessels. Stem Cell Reports.  https://doi.org/10.1016/j.stemcr.2016.05.011.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Al-Nbaheen, M., Vishnubalaji, R., Ali, D., et al. (2013). Human stromal (mesenchymal) stem cells from bone marrow, adipose tissue and skin exhibit differences in molecular phenotype and differentiation potential. Stem Cell Reviews and Reports.  https://doi.org/10.1007/s12015-012-9365-8.PubMedGoogle Scholar
  47. 47.
    Crisan, M., Yap, S., Casteilla, L., Chen, C. W., et al. (2008). A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell.  https://doi.org/10.1016/j.stem.2008.07.003.PubMedGoogle Scholar
  48. 48.
    Guimarães-Camboa, N., Cattaneo, P., Sun, Y., et al. (2017). Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo. Cell Stem Cell.  https://doi.org/10.1016/j.stem.2016.12.006.PubMedCentralGoogle Scholar
  49. 49.
    Murphy, J. M., Dixon, K., Beck, S., Fabian, D., Feldman, A., & Barry, F. (2002). Reduced chondrogenic and adipogenic activity of mesenchymal stem cells from patients with advanced osteoarthritis. Arthritis and Rheumatism.  https://doi.org/10.1002/art.10118.Google Scholar
  50. 50.
    Sakaguchi, Y., Sekiya, I., Yagishita, K., Ichinose, S., Shinomiya, K., & Muneta, T. (2009). Suspended cells from trabecular bone by collagenase digestion become virtually identical to mesenchymal stem cells obtained from marrow. Stem Cells.  https://doi.org/10.1182/blood-2003-12-4452.Google Scholar
  51. 51.
    Latil, M., Rocheteau, P., Châtre, L., et al. (2012). Skeletal muscle stem cells adopt a dormant cell state post mortem and retain regenerative capacity. Nature Communications.  https://doi.org/10.1038/ncomms1890.PubMedGoogle Scholar
  52. 52.
    Valente, S., Alviano, F., Ciavarella, C., et al. (2014). Human cadaver multipotent stromal/stem cells isolated from arteries stored in liquid nitrogen for 5 years. Stem Cell Research & Therapy.  https://doi.org/10.1186/scrt397.Google Scholar
  53. 53.
    Baustian, C., Hanley, S., & Ceredig, R. (2012). Isolation, selection and culture methods to enhance clonogenicity of mouse bone marrow derived mesenchymal stromal cell precursors. Stem Cell Research & Therapy.  https://doi.org/10.1186/s13287-015-0139-5.Google Scholar
  54. 54.
    Futami, I., Ishijima, M., Kaneko, H., et al. (2012). Isolation and characterization of multipotential mesenchymal cells from the mouse synovium. PLoS One.  https://doi.org/10.1371/journal.pone.0045517.Google Scholar
  55. 55.
    Zhu, H., Guo, Z.-K., Jiang, X.-X., et al. (2010). A protocol for isolation and culture of mesenchymal stem cells from mouse compact bone. Nature Protocols.  https://doi.org/10.1038/nprot.2009.238.PubMedGoogle Scholar
  56. 56.
    Tsai, C.-C., Yew, T.-L., Yang, D.-C., Huang, W.-H., & Hung, S.-C. (2012) Benefits of hypoxic culture on bone marrow multipotent stromal cells. American Journal of Blood Research.Google Scholar
  57. 57.
    Dominici, M., Le Blanc, K., Mueller, I., et al. (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy.  https://doi.org/10.1080/14653240600855905.Google Scholar
  58. 58.
    Fuchs, E., & Horsley, V. (2011). Ferreting out stem cells from their niches. Nature Cell Biology.  https://doi.org/10.1038/ncb0511-513.Google Scholar
  59. 59.
    Morikawa, S., Mabuchi, Y., Kubota, Y., et al. (2009). Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. The Journal of Experimental Medicine.  https://doi.org/10.1084/jem.20091046.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Pinho, S., Lacombe, J., Hanoun, M., et al. (2013). PDGFRa and CD51 mark human Nestin + sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. The Journal of Experimental Medicine.  https://doi.org/10.1084/jem.20122252.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Park, D., Spencer, J. A., Koh, B. I., et al. (2012). Cell stem cell endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Stem Cell.  https://doi.org/10.1016/j.stem.2012.02.003.Google Scholar
  62. 62.
    Mizoguchi, T., Pinho, S., Ahmed, J., et al. (2014). Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development. Developmental Cell.  https://doi.org/10.1016/j.devcel.2014.03.013.Google Scholar
  63. 63.
    Liu, Y., Strecker, S., Wang, L., et al. (2013). Osterix-Cre labeled progenitor cells contribute to the formation and maintenance of the bone marrow stroma. PLoS One.  https://doi.org/10.1371/journal.pone.0071318.Google Scholar
  64. 64.
    Marecic, O., Tevlin, R., McArdle, A., et al. (2015). Identification and characterization of an injury-induced skeletal progenitor. Proceedings of the National Academy of Sciences.  https://doi.org/10.1073/pnas.1513066112.Google Scholar
  65. 65.
    Tanaka, K. K., Hall, J. K., Troy, A. A., Cornelison, D. D. W., Majka, S. M., & Olwin, B. B. (2009). Syndecan-4-expressing muscle progenitor cells in the SP engraft as satellite cells during muscle regeneration. Cell Stem Cell.  https://doi.org/10.1016/j.stem.2009.01.016.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Doyle, M. J., Zhou, S., Tanaka, K. K., et al. (2011). Abcg2 labels multiple cell types in skeletal muscle and participates in muscle regeneration. The Journal of Cell Biology.  https://doi.org/10.1083/jcb.201103159.Google Scholar
  67. 67.
    Meeson, A. P., Hawke, T. J., Graham, S., et al. (2004). Cellular and molecular regulation of skeletal muscle side population cells. Stem Cells.  https://doi.org/10.1634/stemcells.2004-0077.PubMedGoogle Scholar
  68. 68.
    Penton, C. M., Thomas-Ahner, J. M., Johnson, E. K., McAllister, C., & Montanaro, F. (2013). Muscle side population cells from dystrophic or injured muscle adopt a fibro-adipogenic fate. PLoS One.  https://doi.org/10.1371/journal.pone.0054553.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Pannérec, A., Formicola, L., Besson, V., Marazzi, G., & Sassoon, D. A. (2013). Defining skeletal muscle resident progenitors and their cell fate potentials. Development.  https://doi.org/10.1242/dev.089326.PubMedGoogle Scholar
  70. 70.
    Cottle, B. J., Lewis, F. C., Shone, V., & Ellison-Hughes, G. M. (2017). Skeletal muscle-derived interstitial progenitor cells (PICs) display stem cell properties, being clonogenic, self-renewing, and multi-potent in vitro and in vivo. Stem Cell Research & Therapy.  https://doi.org/10.1186/s13287-017-0612-4.Google Scholar
  71. 71.
    Mitchell, K. J., Pannerec, A., Cadot, B., et al. (2010). Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development. Nature Cell Biol.  https://doi.org/10.1038/ncb2025.PubMedGoogle Scholar
  72. 72.
    Lewis, F. C., Henning, B. J., Marazzi, G., Sassoon, D., Ellison, G. M., & Nadal-Ginard, B. (2014). Porcine skeletal-muscle-derived multipotent PW1 pos /Pax7 neg interstitial cells: isolation, characterization, and long-term culture. Stem Cells Transational Medicine.  https://doi.org/10.5966/sctm.2013-0174.Google Scholar
  73. 73.
    Bosnakovski, D., Xu, Z., Li, W., et al. (2008). Prospective isolation of skeletal muscle stem cells with a Pax7 reporter. Stem Cells.  https://doi.org/10.1634/stemcells.2007-1017.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Seale, P., Sabourin, L. A., Girgis-Gabardo, A., Mansouri, A., Gruss, P., & Rudnicki, M. A. (2000) Pax7 is required for the specification of myogenic satellite cells skeletal muscle. Cell, 102(6), 777–786.PubMedCrossRefGoogle Scholar
  75. 75.
    Xu, X., Wilschut, K. J., Kouklis, G., et al. (2015). Human satellite cell transplantation and regeneration from diverse skeletal muscles. Stem Cell Reports.  https://doi.org/10.1016/j.stemcr.2015.07.016.Google Scholar
  76. 76.
    Morosetti, R., Mirabella, M., Gliubizzi, C., et al. (2007). Isolation and characterization of mesoangioblasts from facioscapulohumeral muscular dystrophy muscle biopsies. Stem Cells.  https://doi.org/10.1634/stemcells.2007-0465.PubMedGoogle Scholar
  77. 77.
    Bonfanti, C., Rossi, G., Tedesco, F. S., et al. (2015). ARTICLE PW1/Peg3 expression regulates key properties that determine mesoangioblast stem cell competence. Nature Communications.  https://doi.org/10.1038/ncomms7364.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Morosetti, R., Mirabella, M., Gliubizzi, C., et al. (2006). MyoD expression restores defective myogenic differentiation of human mesoangioblasts from inclusion-body myositis muscle. Proceeding of the National Academy of Sciences.  https://doi.org/10.1073/pnas.0603386103.Google Scholar
  79. 79.
    Dellavalle, A., Maroli, G., Covarello, D., et al. (2011). Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nature Communications.  https://doi.org/10.1038/ncomms1508.PubMedGoogle Scholar
  80. 80.
    Birbrair, A., Zhang, T., Wang, Z. M., et al. (2013). Role of pericytes in skeletal muscle regeneration and fat accumulation. Stem Cells and Development.  https://doi.org/10.1089/scd.2012.0647.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Dellavalle, A., Sampaolesi, M., Tonlorenzi, R., et al. (2007) Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nature Cell Biology,  https://doi.org/10.1038/ncb1542.PubMedGoogle Scholar
  82. 82.
    Uezumi, A., Ito, T., Morikawa, D., et al. (2011). Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle. Journal of Cell Science.  https://doi.org/10.1242/jcs.086629.PubMedGoogle Scholar
  83. 83.
    Uezumi, A., Fukada, S., Yamamoto, N., Takeda, S., & Tsuchida, K. (2010). Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nature Cell Biology.  https://doi.org/10.1038/ncb2014.PubMedGoogle Scholar
  84. 84.
    Uezumi, A., Fukada, S., Yamamoto, N., et al. (2014). Identification and characterization of PDGFRa + mesenchymal progenitors in human skeletal muscle. Cell Death & Disease.  https://doi.org/10.1038/cddis.2014.161.Google Scholar
  85. 85.
    Arrighi, N., Moratal, C., Clément, N., et al. (2015). Characterization of adipocytes derived from fibro/adipogenic progenitors resident in human skeletal muscle. Cell Death & Disease.  https://doi.org/10.1038/cddis.2015.79.Google Scholar
  86. 86.
    Joe, A. W., Yi, L., Natarajan, A., et al. (2010). Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nature Cell Biology.  https://doi.org/10.1038/ncb2015.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Xu, W., Sun, Y., Zhang, J., et al. (2015). Perivascular-derived stem cells with neural crest characteristics are involved in tendon repair. Stem Cells and Development.  https://doi.org/10.1089/scd.2014.0036.Google Scholar
  88. 88.
    Runesson, E., Ackermann, P., Karlsson, J., & Eriksson, B. I. (2015). A randomised controlled trial of percutaneous fixation with kirschner wires versus volar locking-plate fixation in the treatment of adult patients with a dorsally displaced fracture of the distal radius. BMC Musculoskeletal Disorders.  https://doi.org/10.1186/s12891-015-0658-3.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Donahue, T., Gregersen, C., Hull, M., et al. (2015). Harnessing endogenous stem/progenitor cells for tendon regeneration. Journal of Biomechanical Engineering.  https://doi.org/10.1172/JCI81589.Google Scholar
  90. 90.
    Dyment, N. A., Hagiwara, Y., Matthews, B. G., Li, Y., Kalajzic, I., & Rowe, D. W. (2014). Lineage tracing of resident tendon progenitor cells during growth and natural healing. PLoS One.  https://doi.org/10.1371/journal.pone.0096113.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Fukada, S., Higuchi, S., Segawa, M., et al. (2004). Purification and cell-surface marker characterization of quiescent satellite cells from murine skeletal muscle by a novel monoclonal antibody. Experimental Cell Research.  https://doi.org/10.1016/j.yexcr.2004.02.018.PubMedGoogle Scholar
  92. 92.
    Kuyinu, E. L., Narayanan, G., Nair, L. S., & Laurencin, C. T. (2016). Animal models of osteoarthritis: classification, update, and measurement of outcomes. Journal of Orthopaedic Surgery and Research.  https://doi.org/10.1186/s13018-016-0346-5.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Mills, L. A., & Simpson, A. H. (2012). In vivo models of bone repair. Bone Joint and Journal.  https://doi.org/10.1302/0301-620X.94B7.27370.Google Scholar
  94. 94.
    Hardy, D., Besnard, A., Latil, M., et al. (2016). Comparative study of injury models for studying muscle regeneration in mice. PLoS One.  https://doi.org/10.1371/journal.pone.0147198.Google Scholar
  95. 95.
    Carpenter, J. E., & Hankenson, K. D. (2004). Animal models of tendon and ligament injuries for tissue engineering applications. Biomaterials.  https://doi.org/10.1016/S0142-9612(03)00507-6.PubMedGoogle Scholar
  96. 96.
    Docheva, D., Müller, S. A., Majewski, M., & Evans, C. H. (2015). Biologics for tendon repair. Advanced Drug Delivery Reviews.  https://doi.org/10.1016/j.addr.2014.11.015.PubMedGoogle Scholar
  97. 97.
    Hast, M. W., Zuskov, A., & Soslowsky, L. J. (2014). The role of animal models in tendon research. Bone and Joint Research.  https://doi.org/10.1302/2046-3758.36.2000281.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Kfoury, Y., & Scadden, D. T. (2015). Cell stem cell mesenchymal cell contributions to the stem cell niche. Stem Cells.  https://doi.org/10.1016/j.stem.2015.02.019.Google Scholar
  99. 99.
    Omatsu, Y., Seike, M., Sugiyama, T., Kume, T., & Nagasawa, T. (2014). Foxc1 is a critical regulator of haematopoietic stem/ progenitor cell niche formation. Nature.  https://doi.org/10.1038/nature13071.PubMedGoogle Scholar
  100. 100.
    Isern, J., Martín-Antonio, B., Ghazanfari, R., et al. (2013). Self-renewing human bone marrow mesenspheres promote hematopoietic stem cell expansion. Cell Reports.  https://doi.org/10.1016/j.celrep.2013.03.041.PubMedGoogle Scholar
  101. 101.
    Ding, L., Saunders, T. L., Enikolopov, G., & Morrison, S. J. (2012). Endothelial and perivascular cells maintain haematopoietic stem cells. Nature.  https://doi.org/10.1038/nature10783.Google Scholar
  102. 102.
    Kunisaki, Y., Bruns, I., Scheiermann, C., et al. (2013). Arteriolar niches maintain haematopoietic stem cell quiescence. Nature.  https://doi.org/10.1038/nature12612.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Fernandez-Moure, J. S., Corradetti, B., Chan, P., et al. (2015). Enhanced osteogenic potential of mesenchymal stem cells from cortical bone: a comparative analysis. Stem Cell Research & Therapy.  https://doi.org/10.1186/s13287-015-0193-z.Google Scholar
  104. 104.
    Li, H., Ghazanfari, R., Zacharaki, D., et al. (2014). Low/ negative expression of PDGFR-α identifies the candidate primary mesenchymal stromal cells in adult human bone marrow. Stem Cell Reports.  https://doi.org/10.1016/j.stemcr.2014.09.018.Google Scholar
  105. 105.
    Campbell, T. M., Churchman, S. M., Gomez, A., et al. (2016). Mesenchymal stem cell alterations in bone marrow lesions in patients with hip osteoarthritis. Arthritis & Rheumatology.  https://doi.org/10.1002/art.39622.Google Scholar
  106. 106.
    Lee, W. C., Shi, H., Poon, Z., et al. (2014). Multivariate biophysical markers predictive of mesenchymal stromal cell multipotency. Proceedings of the National Academy of Science.  https://doi.org/10.1073/pnas.1402306111.Google Scholar
  107. 107.
    Johnson, K., Zhu, S., Tremblay, M. S., et al. (2013). A stem-cell–based approach to cartilage repair. Science.  https://doi.org/10.1126/science.1229223.Google Scholar
  108. 108.
    Mauro, A. (1961). Satellite cell of skeletal muscle fibers. The Journal of Biophysical and Biochemical Cytology.  https://doi.org/10.1083/jcb.9.2.493.Google Scholar
  109. 109.
    Muir, A. R., Kanji, A. H., & Allbrook, D. (1965). The structure of the satellite cells in skeletal muscle. Journal of Anatomy, 99(Pt 3), 435–444.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Goodell, M. A., Brose, K., Paradis, G., Conner, A. S., & Mulligan, R. C. (1996). Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. The Journal of Experimental Medicine.  https://doi.org/10.1084/jem.183.4.1797.PubMedGoogle Scholar
  111. 111.
    Montanaro, F., Liadaki, K., Schienda, J., Flint, A., Gussoni, E., & Kunkel, L. M. (2004). Demystifying SP cell purification: Viability, yield, and phenotype are defined by isolation parameters. Experimental Cell Research.  https://doi.org/10.1016/j.yexcr.2004.04.010.Google Scholar
  112. 112.
    Uezumi, A., Ojima, K., Fukada, S., et al. (2006). Functional heterogeneity of side population cells in skeletal muscle. Biochemical and Biophysical Research Communications.  https://doi.org/10.1016/j.bbrc.2006.01.037.PubMedGoogle Scholar
  113. 113.
    Zhou, S., Schuetz, J. D., Bunting, K. D., et al. (2001). The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nature Medicine.  https://doi.org/10.1038/nm0901-1028.Google Scholar
  114. 114.
    Asakura, A., Seale, P., Girgis-Gabardo, A., & Rudnicki, M. A. (2002). Myogenic specification of side population cells in skeletal muscle. The Journal of Cell Biology.  https://doi.org/10.1083/jcb.200202092.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Sampaolesi, M., Torrente, Y., Innocenzi, A., et al. (2003). Cell therapy of α-sarcoglycan-null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science.  https://doi.org/10.1126/science.1082254.PubMedGoogle Scholar
  116. 116.
    Galvez, B. G., Sampaolesi, M., Brunelli, S., et al. (2006). Complete repair of dystrophic skeletal muscle by mesoangioblasts with enhanced migration ability. The Journal of Cell Biology.  https://doi.org/10.1083/jcb.200512085.Google Scholar
  117. 117.
    Sampaolesi, M., Blot, S., D’Antona, G., et al. (2006). Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature.  https://doi.org/10.1038/nature05282.PubMedGoogle Scholar
  118. 118.
    Cossu, G., Previtali, S. C., Napolitano, S., et al. (2015). Intra-arterial transplantation of HLA-matched donor mesoangioblasts in Duchenne muscular dystrophy. EMBO Molecular Medicine.  https://doi.org/10.15252/emmm.201505636.Google Scholar
  119. 119.
    Relaix, F., & Zammit, P. S. (2012). Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. Development.  https://doi.org/10.1242/dev.069088.PubMedCentralGoogle Scholar
  120. 120.
    Sambasivan, R., Yao, R., Kissenpfennig, A., Van Wittenberghe, L., et al. (2011). Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development.  https://doi.org/10.1242/dev.067587.Google Scholar
  121. 121.
    Hernandez-Torres, F., Rodríguez-Outeiriño, L., Franco, D., & Aranega, A. E. (2017). Pitx2 in embryonic and adult myogenesis. Frontiers in Cell and Development Biology.  https://doi.org/10.3389/fcell.2017.00046.Google Scholar
  122. 122.
    Zhang, J., & Wang, J. (2013). Human tendon stem cells better maintain their stemness in hypoxic culture conditions. PLoS One.  https://doi.org/10.1371/journal.pone.0061424.Google Scholar
  123. 123.
    Bi, Y., Ehirchiou, D., Kilts, T. M., et al. (2007). Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nature Medicine.  https://doi.org/10.1038/nm1630.PubMedGoogle Scholar
  124. 124.
    Po, P., & Lui, Y. (2015). Stem cell technology for tendon regeneration: current status, challenges, and future research directions. Stem Cells Cloning: Advances and Applications.  https://doi.org/10.2147/SCCAA.S60832.Google Scholar
  125. 125.
    Zhang, X., Lin, Y. C., Rui, Y. F., et al. (2016). Therapeutic roles of tendon stem/ progenitor cells in tendinopathy. Stem Cells International.  https://doi.org/10.1155/2016/4076578.Google Scholar
  126. 126.
    Lee, K. J., Clegg, P. D., Comerford, E. J., & Canty-Laird, E. G. (2017). Ligament-derived stem cells: identification, characterisation, and therapeutic application. Stem Cells International.  https://doi.org/10.1155/2017/1919845.Google Scholar
  127. 127.
    Cheng, M. T., Yang, H. W., Chen, T. H., & Lee, O. K. (2009). Isolation and characterization of multipotent stem cells from human cruciate ligaments. Cell Proliferation.  https://doi.org/10.1111/j.1365-2184.2009.00611.x.PubMedGoogle Scholar
  128. 128.
    de Sousa, E., Casado, P., Neto, V., Duarte, M. E., & Aguiar, D. (2014). Synovial fluid and synovial membrane mesenchymal stem cells: latest discoveries and therapeutic perspectives. Stem Cell Research & Therapy.  https://doi.org/10.1186/scrt501.Google Scholar
  129. 129.
    Spees, J. L., Lee, R. H., & Gregory, C. A. (2016). Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Research & Therapy.  https://doi.org/10.1186/s13287-016-0363-7.Google Scholar
  130. 130.
    Zachar, L., Bačenková, D., & Rosocha, J. (2016). Activation, homing, and role of the mesenchymal stem cells in the inflammatory environment. Journal of Inflammation Research.  https://doi.org/10.2147/JIR.S121994.PubMedPubMedCentralGoogle Scholar
  131. 131.
    Schepers, K., & Fibbe, W. E. (2016). Unraveling mechanisms of mesenchymal stromal cell-mediated immunomodulation through patient monitoring and product characterization. Annals of the New York Academy of Sciences.  https://doi.org/10.1111/nyas.12984.Google Scholar
  132. 132.
    Zhao, Q., Ren, H., & Han, Z. (2016). Mesenchymal stem cells: Immunomodulatory capability and clinical potential in immune diseases. Journal of Cellular Immunotherapy.  https://doi.org/10.1016/j.jocit.2014.12.001.Google Scholar
  133. 133.
    Regulski, M. J. (2017). Mesenchymal stem cells: “guardians of inflammation.” Wounds, 29, 20–27.PubMedGoogle Scholar
  134. 134.
    Nishizawa, K., & Seki, R. (2016). Mechanisms of immunosuppression by mesenchymal stromal cells: a review with a focus on molecules. Biomedical Research and Clinical Practice.  https://doi.org/10.15761/BRCP.1000116.Google Scholar
  135. 135.
    Glenn, J. D. (2014). Mesenchymal stem cells: emerging mechanisms of immunomodulation and therapy. World Journal of Stem Cells.  https://doi.org/10.4252/wjsc.v6.i5.526.PubMedPubMedCentralGoogle Scholar
  136. 136.
    Gruh, I., & Martin, U. (2009). Transdifferentiation of stem cells: a critical view. Engineering of Stem Cells.  https://doi.org/10.1007/10_2008_49.Google Scholar
  137. 137.
    Prockop, D. J., & Oh, J. Y. (2012). Medical therapies with adult stem/progenitor cells (MSCs): a backward journey from dramatic results in vivo to the cellular and molecular explanations. Journal of Cellular Biochemistry.  https://doi.org/10.1002/jcb.24046.PubMedPubMedCentralGoogle Scholar
  138. 138.
    Sottile, F., Aulicino, F., Theka, I., & Cosma, M. P. (2016). Mesenchymal stem cells generate distinct functional hybrids in vitro via cell fusion or entosis. Scientific Reports.  https://doi.org/10.1038/srep36863.PubMedPubMedCentralGoogle Scholar
  139. 139.
    Usunier, B., Benderitter, M., Tamarat, R., & Chapel, A. (2014). Management of fibrosis: the mesenchymal stromal cells breakthrough. Stem Cells International.  https://doi.org/10.1155/2014/340257.Google Scholar
  140. 140.
    Islam, M. N., Das, S. R., Emin, M. T., et al. (2012). Mitochondrial transfer from bone marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nature Medicine.  https://doi.org/10.1038/nm.2736.Google Scholar
  141. 141.
    Chinnery, H. R., Pearlman, E., & McMenamin, P. G. (2008). Cutting edge: Membrane nanotubes in vivo: a feature of MHC class II + cells in the mouse cornea. Journal of Immunology, 180(9), 5779–5783.CrossRefGoogle Scholar
  142. 142.
    Liu, K., Ji, K., Guo, L., et al. (2014). Mesenchymal stem cells rescue injured endothelial cells in an in vitro ischemia–reperfusion model via tunneling nanotube like structure-mediated mitochondrial transfer. Microvascular Research.  https://doi.org/10.1016/j.mvr.2014.01.008.Google Scholar
  143. 143.
    Valadi, H., Ekström, K., Bossios, A., Sjöstrand, M., Lee, J. J., & Lötvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology.  https://doi.org/10.1038/ncb1596.PubMedGoogle Scholar
  144. 144.
    Viganò, M., Sansone, V., d’Agostino, M. C., Romeo, P., Perucca Orfei, C., & de Girolamo, L. (2016). Mesenchymal stem cells as therapeutic target of biophysical stimulation for the treatment of musculoskeletal disorders. Journal of Orthopaedic Surgery and Research.  https://doi.org/10.1186/s13018-016-0496-5.PubMedPubMedCentralGoogle Scholar
  145. 145.
    Coelho, M. B., Cabral, J. M. S., & Karp, J. M. (2012). Intraoperative stem cell therapy. Annual Review of Biomedical Engineering.  https://doi.org/10.1146/annurev-bioeng-071811-150041.PubMedPubMedCentralGoogle Scholar
  146. 146.
    Veronesi, F., Giavaresi, G., Tschon, M., Borsari, V., Nicoli Aldini, N., & Fini, M. (2013). Clinical use of bone marrow, bone marrow concentrate, and expanded bone marrow mesenchymal stem cells in cartilage disease. Stem Cells and Development.  https://doi.org/10.1089/scd.2012.0373.PubMedGoogle Scholar
  147. 147.
    Hernigou, P., Homma, Y., Flouzat Lachaniette, C.H., et al (2013). Benefits of small volume and small syringe for bone marrow aspirations of mesenchymal stem cells. International Orthopaedics.  https://doi.org/10.1007/s00264-013-2017-z.
  148. 148.
    Otsuru, S., Hofmann, T. J., Olson, T. S., Dominici, M., & Horwitz, E. M. (2013). Improved isolation and expansion of bone marrow mesenchymal stromal cells using a novel marrow filter device. Cytotherapy.  https://doi.org/10.1016/j.jcyt.2012.10.012.PubMedGoogle Scholar
  149. 149.
    Ito, K., Aoyama, T., Fukiage, K., et al. (2010). A novel method to isolate mesenchymal stem cells from bone marrow in a closed system using a device made by nonwoven fabric. Tissue Engineering Part C Methods.  https://doi.org/10.1089/ten.TEC.2008.0693.PubMedGoogle Scholar
  150. 150.
    Zuk, P. A., Zhu, M., Mizuno, H., et al. (2001). Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Engineering.  https://doi.org/10.1089/107632701300062859.PubMedGoogle Scholar
  151. 151.
    Lendeckel, S., Jödicke, A., Christophis, P., et al. (2004). Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. Journal of Cranio-Maxillofacial Surgery.  https://doi.org/10.1016/j.jcms.2004.06.002.PubMedGoogle Scholar
  152. 152.
    Baer, P. C., & Geiger, H. (2012). Adipose-derived mesenchymal stromal/stem cells: tissue localization, characterization, and heterogeneity. Stem Cells International.  https://doi.org/10.1155/2012/812693.Google Scholar
  153. 153.
    Fraser, J. K., Zhu, M., Wulur, I., & Alfonso, Z. (2008). Adipose-derived stem cells. Methods in Molecular Biology.  https://doi.org/10.1007/978-1-60327-169-1_4.PubMedGoogle Scholar
  154. 154.
    Pak, J., Lee, J. H., Park, K. S., Park, M., Kang, L. W., & Lee, S. H. (2017). Current use of autologous adipose tissue-derived stromal vascular fraction cells for orthopedic applications. Journal of Biomedical Sciences.  https://doi.org/10.1186/s12929-017-0318-z.Google Scholar
  155. 155.
    Ancans, J. (2012). Cell therapy medicinal product regulatory framework in Europe and its application for MSC-based therapy development. Frontiers in Immunology.  https://doi.org/10.3389/fimmu.2012.00253.PubMedPubMedCentralGoogle Scholar
  156. 156.
    Kristjánsson, B., & Honsawek, S. (2014). Current perspectives in mesenchymal stem cell therapies for osteoarthritis. Stem Cells International.  https://doi.org/10.1155/2014/194318.PubMedPubMedCentralGoogle Scholar
  157. 157.
    Reissis, D., Tang, Q. O., Cooper, N. C., et al. (2016). Current clinical evidence for the use of mesenchymal stem cells in articular cartilage repair. Expert Opinion on Biological Therapy.  https://doi.org/10.1517/14712598.2016.1145651.PubMedGoogle Scholar
  158. 158.
    Centeno, C. J., Al-Sayegh, H., Freeman, M. D., Smith, J., Murrell, W. D., & Bubnov, R. (2016). A multi-center analysis of adverse events among two thousand, three hundred and seventy two adult patients undergoing adult autologous stem cell therapy for orthopaedic conditions. International Orthopaedics.  https://doi.org/10.1007/s00264-016-3162-y.PubMedGoogle Scholar
  159. 159.
    Deng, Z., Jin, J., Zhao, J., & Xu, H. (2016). Cartilage defect treatments: With or without cells? Mesenchymal stem cells or chondrocytes? Traditional or matrix-assisted? A systematic review and meta-analyses. Stem Cells International.  https://doi.org/10.1155/2016/9201492.Google Scholar
  160. 160.
    Kon, E., Roffi, A., Filardo, G., Tesei, G., & Marcacci, M. (2015). Scaffold-based cartilage treatments: with or without cells? A systematic review of preclinical and clinical evidence. Arthroscopy.  https://doi.org/10.1016/j.arthro.2014.11.017.PubMedGoogle Scholar
  161. 161.
    Merlos-Suárez, A., Barriga, F. M., Jung, P., et al. (2011). The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell.  https://doi.org/10.1016/j.stem.2011.02.020.PubMedGoogle Scholar
  162. 162.
    Cao, C., Dong, Y., & Dong, Y. (2005). [Study on culture and in vitro osteogenesis of blood-derived human mesenchymal stem cells]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 19, 642–647.PubMedGoogle Scholar
  163. 163.
    Kassis, I., Zangi, L., Rivkin, R., et al. (2006). Isolation of mesenchymal stem cells from G-CSF-mobilized human peripheral blood using fibrin microbeads. Bone Marrow Transplant.  https://doi.org/10.1038/sj.bmt.1705358.PubMedGoogle Scholar
  164. 164.
    Pino, A. M., Rosen, C. J., & Rodríguez, J. P. (2012). In Osteoporosis, differentiation of mesenchymal stem cells (MSCs) improves bone marrow adipogenesis. Biological Research.  https://doi.org/10.4067/S0716-97602012000300009.PubMedGoogle Scholar
  165. 165.
    Rodríguez, J. P., Garat, S., Gajardo, H., Pino, A. M., & Seitz, G. (1999). Abnormal osteogenesis in osteoporotic patients is reflected by altered mesenchymal stem cells dynamics. Journal of Cellular Biochemistry.  https://doi.org/10.1002/(SICI)1097-4644(19991201)75:3<414::AID-JCB7>3.0.CO;2-C Google Scholar
  166. 166.
    Rosen, C. J., & Bouxsein, M. L. (2006). Mechanisms of disease: is osteoporosis the obesity of bone? Nature Clinical Practice Rheumatology.  https://doi.org/10.1038/ncprheum0070.PubMedGoogle Scholar
  167. 167.
    D’Ippolito, G., Schiller, P. C., Ricordi, C., Roos, B. A., & Howard, G. A. (1999). Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. Journal of Bone and Mineral Research.  https://doi.org/10.1359/jbmr.1999.14.7.1115.Google Scholar
  168. 168.
    Gunawardene, P., Bermeo, S., Vidal, C., et al. (2016). Association between circulating osteogenic progenitor cells and disability and frailty in older persons: the Nepean osteoporosis and frailty study. The Journals of Gerontology Series A, Biological Sciences and Medical Sciences.  https://doi.org/10.1093/gerona/glv190.PubMedGoogle Scholar
  169. 169.
    Yu, B., & Wang, C. Y. (2016). Osteoporosis: the result of an “aged” bone microenvironment. Trends Mol Med.  https://doi.org/10.1016/j.molmed.2016.06.002.PubMedPubMedCentralGoogle Scholar
  170. 170.
    Benisch, P., Schilling, T., Klein-Hitpass, L., et al. (2012). The transcriptional profile of mesenchymal stem cell populations in primary osteoporosis is distinct and shows overexpression of osteogenic inhibitors. PLoS One.  https://doi.org/10.1371/journal.pone.0045142.PubMedPubMedCentralGoogle Scholar
  171. 171.
    Marco, F., Milena, F., Gianluca, G., & Vittoria, O. (2005). Peri-implant osteogenesis in health and osteoporosis. Micron.  https://doi.org/10.1016/j.micron.2005.07.008.PubMedGoogle Scholar
  172. 172.
    Heilmeier, U., Hackl, M., Skalicky, S., et al. (2016). Serum miRNA signatures are indicative of skeletal fractures in postmenopausal women with and without type 2 diabetes and influence of osteogenic and adipogenic differentiation of adipose-tissue-derived mesenchymal stem cells in vitro. Journal of Bone and Mineral Research.  https://doi.org/10.1002/jbmr.2897.PubMedGoogle Scholar
  173. 173.
    Barry, F., & Murphy, M. (2013). Mesenchymal stem cells in joint disease and repair. Nature Reviews Rheumatology.  https://doi.org/10.1038/nrrheum.2013.109.PubMedGoogle Scholar
  174. 174.
    Hermida-Gómez, T., Fuentes-Boquete, I., Gimeno-Longas, M. J., et al. (2011). Quantification of cells expressing mesenchymal stem cell markers in healthy and osteoarthritic synovial membranes. The Journal of Rheumatology.  https://doi.org/10.3899/jrheum.100614.PubMedGoogle Scholar
  175. 175.
    Findlay, D. M., & Kuliwaba, J. S. (2016). Bone–cartilage crosstalk: a conversation for understanding osteoarthritis. Bone Research.  https://doi.org/10.1038/boneres.2016.28.PubMedPubMedCentralGoogle Scholar
  176. 176.
    Kalinkovich, A., & Livshits, G. (2015). Sarcopenia–The search for emerging biomarkers. Ageing Research Reviews.  https://doi.org/10.1016/j.arr.2015.05.001.PubMedGoogle Scholar
  177. 177.
    Sousa-Victor, P., & Muñoz-Cánoves, P. (2016). Regenerative decline of stem cells in sarcopenia. Molecular Aspects of Medicine.  https://doi.org/10.1016/j.mam.2016.02.002.PubMedGoogle Scholar
  178. 178.
    Sousa-Victor, P., Gutarra, S., García-Prat, L., et al. (2014). Geriatric muscle stem cells switch reversible quiescence into senescence. Nature.  https://doi.org/10.1038/nature13013.PubMedGoogle Scholar
  179. 179.
    Fry, C. S., Lee, J. D., Mula, J., et al. (2015). Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia. Nature Medicine.  https://doi.org/10.1038/nm.3710.PubMedCentralGoogle Scholar
  180. 180.
    Dennison, E. M., Sayer, A. A., & Cooper, C. (2017). Epidemiology of sarcopenia and insight into possible therapeutic targets. Nature Reviews Rheumatology.  https://doi.org/10.1038/nrrheum.2017.60.PubMedGoogle Scholar
  181. 181.
    Snijders, T., Verdijk, L. B., & van Loon, L. J. C. (2009). The impact of sarcopenia and exercise training on skeletal muscle satellite cells. Ageing Research Reviews.  https://doi.org/10.1016/j.arr.2009.05.003.PubMedGoogle Scholar
  182. 182.
    Emery, A. E. H. (1991). Population frequencies of inherited neuromuscular diseases-A world survey. Neuromuscular Disorders.  https://doi.org/10.1016/0960-8966(91)90039-U.Google Scholar
  183. 183.
    Song, Y., Yao, S., Liu, Y., et al. (2017). Expression levels of TGF-β1 and CTGF are associated with the severity of Duchenne muscular dystrophy. Experimental and Therapeutic Medicine.  https://doi.org/10.3892/etm.2017.4105.Google Scholar
  184. 184.
    Almeida, C. F., Martins, P. C., & Vainzof, M. (2016). Comparative transcriptome analysis of muscular dystrophy models Largemyd, Dmdmdx/Largemyd and Dmdmdx: what makes them different? European Journal of Human Genetics.  https://doi.org/10.1038/ejhg.2016.16.PubMedPubMedCentralGoogle Scholar
  185. 185.
    Dumont, N. A., Xin Wang, Y., & von Maltzahn, J. (2015). Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division. Nature Medicine.  https://doi.org/10.1038/nm.3990.Google Scholar
  186. 186.
    Marg, A., Escobar, H., Gloy, S., et al. (2014). Human satellite cells have regenerative capacity and are genetically manipulable. Journal of Clinical Investigation.  https://doi.org/10.1172/JCI63992.PubMedPubMedCentralGoogle Scholar
  187. 187.
    Wang, Y., Han, Z., Song, Y., & Han, Z. C. (2012). Safety of mesenchymal stem cells for clinical application. Stem Cells International.  https://doi.org/10.1155/2012/652034.Google Scholar
  188. 188.
    Lu, X., & Zhao, T. (2013). Clinical Therapy using iPSCs: Hopes and Challenges. Genomics, Proteomics & Bioinformatics.  https://doi.org/10.1016/j.gpb.2013.09.002.PubMedCentralGoogle Scholar
  189. 189.
    Liu, X., Li, W., Fu, X., & Xu, Y. (2017). The immunogenicity and immune tolerance of pluripotent stem cell derivatives. Frontiers in Immunology.  https://doi.org/10.3389/fimmu.2017.00645.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia
  2. 2.EDUCELL Cell Therapy ServiceTrzinSlovenia
  3. 3.Department of Orthopaedic SurgeryUniversity Medical Centre LjubljanaLjubljanaSlovenia

Personalised recommendations