Stem Cell Reviews and Reports

, Volume 14, Issue 2, pp 153–165 | Cite as

Molecular and Cellular Mechanisms Involved in Mesenchymal Stem Cell-Based Therapy of Inflammatory Bowel Diseases

  • Bojana Simovic Markovic
  • Tatjana Kanjevac
  • C. Randall Harrell
  • Marina Gazdic
  • Crissy Fellabaum
  • Nebojsa Arsenijevic
  • Vladislav VolarevicEmail author


Mesenchymal stem cells (MSCs) are promising resource for the therapy of inflammatory bowel diseases (IBDs) on the grounds of their differentiation capabilities and immuno-modulatory characteristics. Results of clinical studies indicate that local application of MSCs is a secure and beneficial approach for the treatment of perianal fistulas while systemic application of MSCs leads to the attenuation or aggravation of IBDs. Herein, we emphasized molecular mechanisms and approaches that should improve efficacy of MSC-based therapy of IBDs.


Mesenchymal stem cells Chron’s disease Ulcerative colitis Transplantation Cell-based therapy 



This study was supported by Serbian Ministry of Science (ON175069, ON175103) and Faculty of Medical Sciences University of Kragujevac (JP02/09).

The authors would like to express their thanks to Nemanja Jovicic who created figures.

Author Contributions

All authors had substantial input into the conception of the work, drafting, revision, and final approval of the manuscript.

Compliance with Ethical Standards

Conflict of Interest

The authors declare no potential conflicts of interest.


  1. 1.
    Abraham, B. P., Ahmed, T., & Ali, T. (2017). Inflammatory bowel disease: pathophysiology and current therapeutic approaches. Handbook of Experimental Pharmacology, 239, 115–146.PubMedCrossRefGoogle Scholar
  2. 2.
    Mao, F., Tu, Q., Wang, L., et al. (2017). Mesenchymal stem cells and their therapeutic applications in inflammatory bowel disease. Oncotarget, 8(23), 38008–38021.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    da Silva Meirelles, L., Chagastelles, P. C., & Nardi, N. B. (2006). Mesenchymal stem cells reside in virtually all post-natal organs and tissues. Journal of Cell Science, 119(Pt 11), 2204–2213.PubMedCrossRefGoogle Scholar
  4. 4.
    Bouma, G., & Strober, W. (2003). The immunological and genetic basis of inflammatory bowel disease. Nature Reviews Immunology, 3(7), 521–533.PubMedCrossRefGoogle Scholar
  5. 5.
    Strober, W., Fuss, I., & Mannon, P. (2007). The fundamental basis of inflammatory bowel disease. The Journal of Clinical Investigation, 117(3), 514–521.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Porter, C. K., Tribble, D. R., Aliaga, P. A., Halvorson, H. A., & Riddle, M. S. (2008). Infectious gastroenteritis and risk of developing inflammatory bowel disease. Gastroenterology, 135(3), 781–786.PubMedCrossRefGoogle Scholar
  7. 7.
    MacDonald, T. T., Monteleone, I., Fantini, M. C., & Monteleone, G. (2011). Regulation of homeostasis and inflammation in the intestine. Gastroenterology, 140(6), 1768–1775.PubMedCrossRefGoogle Scholar
  8. 8.
    Geissmann, F., Manz, M. G., Jung, S., Sieweke, M. H., Merad, M., & Ley, K. (2010). Development of monocytes, macrophages, and dendritic cells. Science, 327(5966), 656–661.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Hart, A. L., Al-Hassi, H. O., Rigby, R. J., et al. (2005). Characteristics of intestinal dendritic cells in inflammatory bowel diseases. Gastroenterology, 129(1), 50–65.PubMedCrossRefGoogle Scholar
  10. 10.
    Rescigno, M., & Di Sabatino, A. (2009). Dendritic cells in intestinal homeostasis and disease. The Journal of Clinical Investigation, 119(9), 2441–2450.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Zenewicz, L. A., Antov, A., & Flavell, R. A. (2009). CD4 T-cell differentiation and inflammatory bowel disease. Trends in Molecular Medicine, 15(5), 199–207.PubMedCrossRefGoogle Scholar
  12. 12.
    Monteleone, G., & Caprioli, F. (2010). T-cell-directed therapies in inflammatory bowel diseases. Clinical Science (London), 118(12), 707 – 15.CrossRefGoogle Scholar
  13. 13.
    MacDonald, T. T., Hutchings, P., Choy, M. Y., Murch, S., & Cooke, A. (1990). Tumour necrosis factor-alpha and interferon-gamma production measured at the single cell level in normal and inflamed human intestine. Clinical & Experimental Immunology, 81(2), 301–305.CrossRefGoogle Scholar
  14. 14.
    Fujino, S., Andoh, A., Bamba, S., et al. (2003). Increased expression of interleukin 17 in inflammatory bowel disease. Gut, 52(1), 65–70.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Allez, M., Tieng, V., Nakazawa, A., et al. (2007). CD4 + NKG2D + T cells in Crohn’s disease mediate inflammatory and cytotoxic responses through MICA interactions. Gastroenterology, 132(7), 2346–2358.PubMedCrossRefGoogle Scholar
  16. 16.
    Emmrich, J., Seyfarth, M., Fleig, W. E., & Emmrich, F. (1991). Treatment of inflammatory bowel disease with anti-CD4 monoclonal antibody. Lancet, 338(8766), 570–571.PubMedCrossRefGoogle Scholar
  17. 17.
    Boden, E. K., & Snapper, S. B. (2008). Regulatory T cells in inflammatory bowel disease. Current Opinion in Gastroenterology, 24(6), 733–741.PubMedCrossRefGoogle Scholar
  18. 18.
    Wang, Y., Liu, X. P., Zhao, Z. B., Chen, J. H., & Yu, C. G. (2011). Expression of CD4 + forkhead box P3 (FOXP3) + regulatory T cells in inflammatory bowel disease. Journal of Digestive Diseases, 12(4), 286–294.PubMedCrossRefGoogle Scholar
  19. 19.
    Maul, J., Loddenkemper, C., Mundt, P., et al. (2005). Peripheral and intestinal regulatory CD4 + CD25(high) T cells in inflammatory bowel disease. Gastroenterology, 128(7), 1868–1878.PubMedCrossRefGoogle Scholar
  20. 20.
    Nowarski, R., Jackson, R., & Flavell, R. A. (2017). The stromal intervention: regulation of Immunity and Inflammation at the epithelial-mesenchymal barrier. Cell, 168(3), 362–375.PubMedCrossRefGoogle Scholar
  21. 21.
    Păunescu, V., Deak, E., Herman, D., et al. (2007). In vitro differentiation of human mesenchymal stem cells to epithelial lineage. Journal of Cellular and Molecular Medicine, 11(3), 502–508.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Ferrand, J., Noël, D., Lehours, P., et al. (2011). Human bone marrow-derived stem cells acquire epithelial characteristics through fusion with gastrointestinal epithelial cells. PLoS One, 6(5), e19569.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Tao, H., Han, Z., Han, Z. C., & Li, Z. (2016). Proangiogenic features of mesenchymal stem cells and their therapeutic applications. Stem Cells International, 2016:1314709.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Oswald, J., Boxberger, S., Jørgensen, B., et al. (2004). Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells, 22(3), 377–384.PubMedCrossRefGoogle Scholar
  25. 25.
    Janeczek Portalska, K., Leferink, A., Groen, N., et al. (2012). Endothelial differentiation of mesenchymal stromal cells. PLoS One, 7(10), e46842.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Volarevic, V., Al-Qahtani, A., Arsenijevic, N., Pajovic, S., & Lukic, M. L. (2010). Interleukin-1 receptor antagonist (IL-1Ra) and IL-1Ra producing mesenchymal stem cells as modulators of diabetogenesis. Autoimmunity, 43(4), 255–263.PubMedCrossRefGoogle Scholar
  27. 27.
    Djouad, F., Charbonnier, L. M., Bouffi, C., et al. (2007). Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells, 25(8), 2025–2032.PubMedCrossRefGoogle Scholar
  28. 28.
    Kong, Q. F., Sun, B., Bai, S. S., et al. (2009). Administration of bone marrow stromal cells ameliorates experimental autoimmune myasthenia gravis by altering the balance of Th1/Th2/Th17/Treg cell subsets through the secretion of TGF-beta. Journal of Neuroimmunology, 207(1–2), 83–91.PubMedCrossRefGoogle Scholar
  29. 29.
    Del Papa, B., Sportoletti, P., Cecchini, D., et al. (2013). Notch1 modulates mesenchymal stem cells mediated regulatory T-cell induction. European Journal of Immunology, 43(1), 182–187.PubMedCrossRefGoogle Scholar
  30. 30.
    Chamberlain, G., Fox, J., Ashton, B., & Middleton, J. (2007). Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells, 25(11), 2739–2749.PubMedCrossRefGoogle Scholar
  31. 31.
    Stenderup, K., Justesen, J., Clausen, C., & Kassem, M. (2003). Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone, 33(6), 919–926.PubMedCrossRefGoogle Scholar
  32. 32.
    Oh, W., Kim, D. S., Yang, Y. S., & Lee, J. K. (2008). Immunological properties of umbilical cord blood-derived mesenchymal stromal cells. Cellular Immunology, 251(2), 116–123.PubMedCrossRefGoogle Scholar
  33. 33.
    Zuk, P. A., Zhu, M., Ashjian, P., et al. (2002). Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell, 13(12), 4279–4295.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317.PubMedCrossRefGoogle Scholar
  35. 35.
    Jin, H. J., Bae, Y. K., Kim, M., et al. (2013). Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. International Journal of Molecular Sciences, 14(9), 17986 – 8001.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Ribeiro, A., Laranjeira, P., Mendes, S., et al. (2013). Mesenchymal stem cells from umbilical cord matrix, adipose tissue and bone marrow exhibit different capability to suppress peripheral blood B, natural killer and T cells. Stem Cell Research & Therapy, 4(5), 125.CrossRefGoogle Scholar
  37. 37.
    Khalil, P. N., Weiler, V., Nelson, P. J., et al. (2007). Nonmyeloablative stem cell therapy enhances microcirculation and tissue regeneration in murine inflammatory bowel disease. Gastroenterology, 132(3), 944–954.PubMedCrossRefGoogle Scholar
  38. 38.
    Hayashi, Y., Tsuji, S., Tsujii, M., et al. (2008). Topical implantation of mesenchymal stem cells has beneficial effects on healing of experimental colitis in rats. Journal of Pharmacology and Experimental Therapeutics, 326(2), 523–531.PubMedCrossRefGoogle Scholar
  39. 39.
    González, M. A., Gonzalez-Rey, E., Rico, L., Büscher, D., & Delgado, M. (2009). Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology, 136(3), 978–989.PubMedCrossRefGoogle Scholar
  40. 40.
    Duijvestein, M., Wildenberg, M. E., Welling, M. M., et al. (2011). Pretreatment with interferon-γ enhances the therapeutic activity of mesenchymal stromal cells in animal models of colitis. Stem Cells, 29(10), 1549–1558.PubMedCrossRefGoogle Scholar
  41. 41.
    Gonzalez-Rey, E., Anderson, P., González, M. A., Rico, L., Büscher, D., & Delgado, M. (2009). Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut, 58(7), 929–939.PubMedCrossRefGoogle Scholar
  42. 42.
    Liang, L., Dong, C., Chen, X., et al. (2011). Human umbilical cord mesenchymal stem cells ameliorate mice trinitrobenzene sulfonic acid (TNBS)-induced colitis. Cell Transplantation, 20(9), 1395–1408.PubMedCrossRefGoogle Scholar
  43. 43.
    Simovic Markovic, B., Nikolic, A., Gazdic, M., et al. (2016). Pharmacological inhibition of Gal-3 in mesenchymal stem cells enhances their capacity to promote alternative activation of macrophages in dextran sulphate sodium-induced colitis. Stem Cells International, 2016, 2640746.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Brittan, M., Chance, V., Elia, G., et al. (2005). A regenerative role for bone marrow following experimental colitis: contribution to neovasculogenesis and myofibroblasts. Gastroenterology, 128(7), 1984–1995.PubMedCrossRefGoogle Scholar
  45. 45.
    Yabana, T., Arimura, Y., Tanaka, H., et al. (2009). Enhancing epithelial engraftment of rat mesenchymal stem cells restores epithelial barrier integrity. The Journal of Pathology, 218(3), 350–359.PubMedCrossRefGoogle Scholar
  46. 46.
    Chen, Q. Q., Yan, L., Wang, C. Z., et al. (2013). Mesenchymal stem cells alleviate TNBS-induced colitis by modulating inflammatory and autoimmune responses. World Journal of Gastroenterology, 19(29), 4702–4717.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Marlicz, W., Yung, D. E., Skonieczna-Żydecka, K., et al. (2017). From clinical uncertainties to precision medicine: the emerging role of the gut barrier and microbiome in small bowel functional diseases. Expert Review of Gastroenterology & Hepatology, 11(10), 961–978.CrossRefGoogle Scholar
  48. 48.
    Xiao, E., He, L., Wu, Q., et al. (2017). Microbiota regulates bone marrow mesenchymal stem cell lineage differentiation and immunomodulation. Stem Cell Research & Therapy, 8(1), 213.CrossRefGoogle Scholar
  49. 49.
    Simovic Markovic, B., Nikolic, A., Gazdic, M., et al. (2016). Galectin-3 plays an important pro-inflammatory role in the induction phase of acute colitis by promoting activation of NLRP3 inflammasome and production of IL-1β in macrophages. Journal of Crohn’s and Colitis, 10(5), 593–606.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Sala, E., Genua, M., Petti, L., et al. (2015). Mesenchymal stem cells reduce colitis in mice via release of TSG6, independently of their localization to the intestine. Gastroenterology, 149(1), 163–176.PubMedCrossRefGoogle Scholar
  51. 51.
    Kim, H. S., Shin, T. H., Lee, B. C., et al. (2013). Human umbilical cord blood mesenchymal stem cells reduce colitis in mice by activating NOD2 signaling to COX2. Gastroenterology, 145(6), 1392–1403.PubMedCrossRefGoogle Scholar
  52. 52.
    Lin, Y., Lin, L., Wang, Q., et al. (2015). Transplantation of human umbilical mesenchymal stem cells attenuates dextran sulfate sodium-induced colitis in mice. Clinical and Experimental Pharmacology and Physiology, 42(1), 76–86.PubMedCrossRefGoogle Scholar
  53. 53.
    Chao, K., Zhang, S., Qiu, Y., et al. (2016). Human umbilical cord-derived mesenchymal stem cells protect against experimental colitis via CD5(+) B regulatory cells. Stem Cell Research & Therapy, 7(1), 109.CrossRefGoogle Scholar
  54. 54.
    Zhang, Y., Jin, Y., Lin, Y., et al. (2015). Adipose-derived mesenchymal stem cells ameliorate ulcerative colitis through miR-1236 negatively regulating the expression of retinoid-related orphan receptor gamma. DNA and Cell Biology, 34(10), 618–625.PubMedCrossRefGoogle Scholar
  55. 55.
    Izcue, A., Coombes, J. L., & Powrie, F. (2006). Regulatory T cells suppress systemic and mucosal immune activation to control intestinal inflammation. Immunological Reviews, 212, 256–271.PubMedCrossRefGoogle Scholar
  56. 56.
    Tanaka, H., Arimura, Y., Yabana, T., et al. (2011). Myogenic lineage differentiated mesenchymal stem cells enhance recovery from dextran sulfate sodium-induced colitis in the rat. Journal of Gastroenterology, 46(2), 143–152.PubMedCrossRefGoogle Scholar
  57. 57.
    Chao, K., Zhang, S., Yao, J., et al. (2014). Imbalances of CD4(+) T-cell subgroups in Crohn’s disease and their relationship with disease activity and prognosis. Journal of Gastroenterology and Hepatology, 29(10), 1808–1814.PubMedCrossRefGoogle Scholar
  58. 58.
    Xie, M., Qin, H., Luo, Q., et al. (2017). Comparison of adipose-derived and bone marrow mesenchymal stromal cells in a murine model of Crohn’s disease. Digestive Diseases and Sciences, 62(1), 115–123.PubMedCrossRefGoogle Scholar
  59. 59.
    Spaggiari, G. M., Capobianco, A., Abdelrazik, H., Becchetti, F., Mingari, M. C., & Moretta, L. (2008). Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood, 111(3), 1327–1333.PubMedCrossRefGoogle Scholar
  60. 60.
    Krampera, M., Cosmi, L., Angeli, R., et al. (2006). Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells, 24(2), 386–398.PubMedCrossRefGoogle Scholar
  61. 61.
    Gazdic, M., Volarevic, V., Arsenijevic, N., & Stojkovic, M. (2015). Mesenchymal stem cells: a friend or foe in immune-mediated diseases. Stem Cell Reviews and Reports, 11(2), 280–287.PubMedCrossRefGoogle Scholar
  62. 62.
    Ciccocioppo, R., Bernardo, M. E., Sgarella, A., et al. (2011). Autologous bone marrow-derived mesenchymal stromal cells in the treatment of fistulising Crohn’s disease. Gut, 60(6), 788–798.PubMedCrossRefGoogle Scholar
  63. 63.
    Molendijk, I., Bonsing, B. A., Roelofs, H., et al. (2015). Allogeneic bone marrow-derived mesenchymal stromal cells promote healing of refractory perianal fistulas in patients with Crohn’s disease. Gastroenterology, 149(4), 918–927.PubMedCrossRefGoogle Scholar
  64. 64.
    García-Olmo, D., García-Arranz, M., García, L. G., et al. (2003). Autologous stem cell transplantation for treatment of rectovaginal fistula in perianal Crohn’s disease: a new cell-based therapy. International Journal of Colorectal Disease, 18(5), 451–454.PubMedCrossRefGoogle Scholar
  65. 65.
    García-Olmo, D., García-Arranz, M., Herreros, D., Pascual, I., Peiro, C., & Rodríguez-Montes, J. A. (2005). A phase I clinical trial of the treatment of Crohn’s fistula by adipose mesenchymal stem cell transplantation. Diseases of the Colon & Rectum, 48(7), 1416–1423.CrossRefGoogle Scholar
  66. 66.
    Garcia-Olmo, D., Herreros, D., Pascual, I., et al. (2009). Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a phase II clinical trial. Diseases of the Colon & Rectum, 52(1), 79–86.CrossRefGoogle Scholar
  67. 67.
    Herreros, M. D., Garcia-Arranz, M., Guadalajara, H., De-La-Quintana, P., & Garcia-Olmo, D., FATT Collaborative Group. (2012). Autologous expanded adipose-derived stem cells for the treatment of complex cryptoglandular perianal fistulas: a phase III randomized clinical trial (FATT 1: fistula Advanced Therapy Trial 1) and long-term evaluation. Diseases of the Colon & Rectum, 55(7), 762–772.CrossRefGoogle Scholar
  68. 68.
    Lee, W. Y., Park, K. J., Cho, Y. B., et al. (2013). Autologous adipose tissue-derived stem cells treatment demonstrated favorable and sustainable therapeutic effect for Crohn’s fistula. Stem Cells, 31(11), 2575–2581.PubMedCrossRefGoogle Scholar
  69. 69.
    Cho, Y. B., Lee, W. Y., Park, K. J., Kim, M., Yoo, H. W., & Yu, C. S. (2013). Autologous adipose tissue-derived stem cells for the treatment of Crohn’s fistula: a phase I clinical study. Cell Transplantation, 22(2), 279–285.PubMedCrossRefGoogle Scholar
  70. 70.
    de la Portilla, F., Alba, F., García-Olmo, D., Herrerías, J. M., González, F. X., & Galindo, A. (2013). Expanded allogeneic adipose-derived stem cells (eASCs) for the treatment of complex perianal fistula in Crohn’s disease: results from a multicenter phase I/IIa clinical trial. International Journal of Colorectal Disease, 28(3), 313–323.PubMedCrossRefGoogle Scholar
  71. 71.
    Panés, J., García-Olmo, D., Van Assche, G., et al. (2016). Expanded allogeneic adipose-derived mesenchymal stem cells (Cx601) for complex perianal fistulas in Crohn’s disease: a phase 3 randomised, double-blind controlled trial. Lancet, 388(10051), 1281–1290.PubMedCrossRefGoogle Scholar
  72. 72.
    Duijvestein, M., Vos, A. C., Roelofs, H., et al. (2010). Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn’s disease: results of a phase I study. Gut, 59(12), 1662–1669.PubMedCrossRefGoogle Scholar
  73. 73.
    Dhere, T., Copland, I., Garcia, M., et al. (2016). The safety of autologous and metabolically fit bone marrow mesenchymal stromal cells in medically refractory Crohn’s disease - a phase 1 trial with three doses. Alimentary Pharmacology & Therapeutics, 44(5), 471–481.CrossRefGoogle Scholar
  74. 74.
    Onken, J., Gallup, D., Hanson, J., Pandak, M., & Custer, L. (2006). Successful outpatient treatment of refractory Crohn’s disease using adult mesenchymal stem cells. American College of Gastroenterology Conference Las Vegas, NV.Google Scholar
  75. 75.
    Liang, J., Zhang, H., Wang, D., et al. (2012). Allogeneic mesenchymal stem cell transplantation in seven patients with refractory inflammatory bowel disease. Gut, 61(3), 468–469.PubMedCrossRefGoogle Scholar
  76. 76.
    Forbes, G. M., Sturm, M. J., Leong, R. W., et al. (2014). A phase 2 study of allogeneic mesenchymal stromal cells for luminal Crohn’s disease refractory to biologic therapy. Clinical Gastroenterology and Hepatology, 12(1), 64–71.PubMedCrossRefGoogle Scholar
  77. 77.
    Pfizer, Athersys Inc. (2014). A study to investigate the safety and possible clinical benefit of Multistem® in patients with moderate to severe ulcerative colitis.Google Scholar
  78. 78.
    Mesoblast International Sàrl, Mesoblast Ltd (2016). Evaluation of PROCHYMAL®Adult human stem cells for treatment-resistant moderate-to-severe Crohn’s disease.Google Scholar
  79. 79.
    Marlicz, W., Zuba-Surma, E., Kucia, M., Blogowski, W., Starzynska, T., & Ratajczak, M. Z. (2012). Various types of stem cells, including a population of very small embryonic-like stem cells, are mobilized into peripheral blood in patients with Crohn’s disease. Inflammatory Bowel Diseases, 18(9), 1711–1722.PubMedCrossRefGoogle Scholar
  80. 80.
    Boltin, D., Kamenetsky, Z., Perets, T. T., et al. (2017). Circulating bone marrow-derived CD45-/CD34+/CD133+/VEGF + endothelial progenitor cells in adults with Crohn’s disease. Digestive Diseases and Sciences, 62(3), 633–638.PubMedCrossRefGoogle Scholar
  81. 81.
    Lindsay, J. O., Allez, M., Clark, M., ASTIC trial group; European Society for Blood and Marrow Transplantation Autoimmune Disease Working Party; European Crohn’s and Colitis Organisation et al. (2017). Autologous stem-cell transplantation in treatment-refractory Crohn’s disease: an analysis of pooled data from the ASTIC trial. Lancet Gastroenterol Hepatol, 2(6), 399–406.Google Scholar
  82. 82.
    Lalu, M. M., McIntyre, L., Pugliese, C., et al. (2012). Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PLoS One, 7(10), e47559.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Faculty of Medical Sciences, Department of Microbiology and immunology, Center for Molecular Medicine and Stem Cell ResearchUniversity of Kragujevac, SerbiaKragujevacSerbia
  2. 2.Faculty of Medical Sciences, Department of DentistryUniversity of Kragujevac, SerbiaKragujevacSerbia
  3. 3.Regenerative Processing Plant, LLCPalm HarborUSA
  4. 4.Faculty of Medical Sciences, Department of GeneticsUniversity of Kragujevac, SerbiaKragujevacSerbia

Personalised recommendations