Skip to main content
Log in

Stem Cells and Progenitors in Human Peripheral Blood Get Activated by Extremely Active Resveratrol (XAR™)

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Resveratrol generated enormous interest as it improved functions of multiple organs and could delay aging in animal models. However, basic mechanism of action was not understood and due to poor bioavailability, it has failed to enter the market. A highly active nano-formulation of resveratrol (XAR™) with enhanced bioavailability is now available. Present study was undertaken to evaluate its effects on stem cells biology in the human peripheral blood. Twelve healthy participants were enrolled of which five received XAR™, five were age-matched placebo controls and two were 76 and 85 years old. Peripheral blood was processed to study serum profile to monitor cardiac and pancreatic functions and subjected to density gradient centrifugation to enrich pluripotent (VSELs) and adult stem cells that get enriched along with red blood cells and in the Buffy coat respectively on Day 2 and Day 15 after XAR™ treatment. The XAR™ treatment resulted in an increased expression of pluripotency transcripts specific for VSELs (Oct-4A, Nanog and Sox2) on D2; specific transcripts for differentiation in the progenitors including Oct-4, Ikaros, CD14, CD90 on D15, and anti-ageing and tumor suppressor transcripts NAD, SIRT1, SIRT6 and p53 in both stem cells and progenitors. An improvement of cardiac and pancreatic markers in serum profile was also observed on D15. The decline in VSELs numbers with age and beneficial effects of the XAR™ treatment were evident by up-regulation of specific transcripts and on serum profile. XAR™ is a promising molecule that has the potential to activate pluripotent VSELs and tissue committed adult stem cells ‘progenitors’ resulting in the rejuvenation of various body tissues and for improved, cancer-free health with advanced age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Howitz, K., Bitterman, J., & Cohen, H. (2003). Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature, 425(September), 191–196. https://doi.org/10.1038/nature01965.1.

    Article  CAS  PubMed  Google Scholar 

  2. Pacholec, M., Bleasdale, J. E., Chrunyk, B., Cunningham, D., Flynn, D., Garofalo, R. S., … Ahn, K. (2010). SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. Journal of Biological Chemistry, 285(11), 8340–8351. https://doi.org/10.1074/jbc.M109.088682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hubbard, B. P., Gomes, A. P., Dai, H., Li, J., Case, A. W., Riera, T. V., … David, A. (2013). Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science, 339(6124), 1216–1219. https://doi.org/10.1126/science.1231097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hubbard, B. P., & Sinclair, D. A. (2013). Measurement of sirtuin enzyme activity using a substrate- agnostic fluorometric nicotinamide assay. Methods in Molecular Biology, 1077, 167–177. https://doi.org/10.1007/978-1-62703-637-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bonkowski, M. S., & Sinclair, D. A. (2016). Slowing ageing by design: the rise of NAD + and sirtuin-activating compounds. Nature Reviews Molecular Cell Biology, 17(11), 679–690. https://doi.org/10.1038/nrm.2016.93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Subramanian, L., Youssef, S., Bhattacharya, S., Kenealey, J., Polans, A. S., & van Ginkel, P. R. (2010). Resveratrol: challenges in translation to the clinic — a critical discussion. Clinical Cancer Research, 16(24), 5942–5948. https://doi.org/10.1016/j.immuni.2010.12.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ratajczak, M. Z., Ratajczak, J., Suszynska, M., Miller, D. M., Kucia, M., & Shin, D. M. (2017). A novel view of the adult stem cell compartment from the perspective of a quiescent population of very small embryonic-like stem cells. Circulation Research, 120(1), 166–178. https://doi.org/10.1161/CIRCRESAHA.116.309362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bhartiya, D., Shaikh, A., Anand, S., Patel, H., Kapoor, S., Sriraman, K., … Unni, S. (2016). Endogenous, very small embryonic-like stem cells: critical review, therapeutic potential and a look ahead. Human Reproduction Update, 23(1), 1–36. https://doi.org/10.1093/humupd/dmw030.

    Article  Google Scholar 

  9. Ratajczak, M. Z., Shin, D. M., Liu, R., Mierzejewska, K., Ratajczak, J., Kucia, M., & Zuba-Surma, E. K. (2012). Very small embryonic/epiblast-like stem cells (VSELs) and their potential role in aging and organ rejuvenation - An update and comparison to other primitive small stem cells isolated from adult tissues. Aging, 4(4), 235–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ratajczak, M. Z., Bartke, A., & Darzynkiewicz, Z. (2017). Prolonged growth hormone/insulin/insulin-like growth factor nutrient response signaling pathway as a silent killer of stem cells and a culprit in aging. Stem Cell Reviews and Reports. https://doi.org/10.1007/s12015-017-9728-2.

    Google Scholar 

  11. Galkowski, D., Ratajczak, M. Z., Kocki, J., & Darzynkiewicz, Z. (2017). Of cytometry, stem cells and fountain of youth. Stem Cell Reviews and Reports. https://doi.org/10.1007/s12015-017-9733-5.

    PubMed  Google Scholar 

  12. Shaikh, A., Anand, S., Kapoor, S., Ganguly, R., & Bhartiya, D. (2017). Mouse bone marrow VSELs exhibit differentiation into three embryonic germ lineages and germ & hematopoietic cells in culture. Stem Cell Reviews and Reports, 13(12), 202–216. https://doi.org/10.1007/s12015-016-9714-0.

    Article  CAS  PubMed  Google Scholar 

  13. Havens, A. M., Sun, H., Shiozawa, Y., Jung, Y., Wang, J., Mishra, A., … Taichman, R. S. (2014). Human and murine very small embryonic-like cells represent multipotent tissue progenitors, in vitro and in vivo. Stem Cells and Development, 23(7), 689–701. https://doi.org/10.1089/scd.2013.0362.

    Article  PubMed  Google Scholar 

  14. Kucia, M., Reca, R., Campbell, F. R., Zuba-Surma, E., Majka, M., Ratajczak, J., & Ratajczak, M. Z. (2006). A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4 + stem cells identified in adult bone marrow. Leukemia, 20(5), 857–869. https://doi.org/10.1038/sj.leu.2404171.

    Article  CAS  PubMed  Google Scholar 

  15. Monti, M., Imberti, B., Bianchi, N., Pezzotta, A., Morigi, M., Fante, D., C., … Perotti, C (2017). A novel method for the isolation of pluripotent stem cells from human umbilical cord blood. Stem Cells and Development. https://doi.org/10.1089/scd.2017.0012.

  16. Abbott, A. (2013). Doubt cast over tiny stem cells. Nature, 499(7459), 390. https://doi.org/10.1038/499390a.

    Article  CAS  PubMed  Google Scholar 

  17. Bhartiya, D. (2017). Pluripotent stem cells in adult tissues: struggling to be acknowledged over two decades. Stem Cell Reviews and Reports, 1–12. https://doi.org/10.1007/s12015-017-9756-y.

  18. Bhartiya, D., Shaikh, A., Nagvenkar, P., Kasiviswanathan, S., Pethe, P., Pawani, H., … Hinduja, I. (2012). Very small embryonic-like stem cells with maximum regenerative potential get discarded during cord blood banking and bone marrow processing for autologous stem cell therapy. Stem Cells and Development, 21(1), 1–6. https://doi.org/10.1089/scd.2011.0311.

    Article  CAS  PubMed  Google Scholar 

  19. Shaikh, A., Nagvenkar, P., Pethe, P., Hinduja, I., & Bhartiya, D. (2015). Molecular and phenotypic characterization of CD133 and SSEA4 enriched very small embryonic-like stem cells in human cord blood. Leukemia, 29(9), 1909–1917. https://doi.org/10.1038/leu.2015.100.

    Article  CAS  PubMed  Google Scholar 

  20. Bhartiya, D. (2017). Do adult somatic cells undergo reprogramming or endogenous pluripotent stem cells get activated to account for plasticity, regeneration and cancer initiation? Stem Cell Reviews and Reports. https://doi.org/10.1007/s12015-017-9749-x.

    Google Scholar 

  21. Boyer, L. A., Lee, T. I., Cole, M. F., Johnstone, S. E., Levine, S. S., Zucker, J. P., … Young, R. A. (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 122(6), 947–956. https://doi.org/10.1016/j.cell.2005.08.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bhartiya, D. (2015). Ovarian stem cells are always accompanied by very small embryonic-like stem cells in adult mammalian ovary. Journal of Ovarian Research, 8(1), 70. https://doi.org/10.1186/s13048-015-0200-0.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shaikh, A., Bhartiya, D., Kapoor, S., & Nimkar, H. (2016). Delineating the effects of 5-fluorouracil and follicle-stimulating hormone on mouse bone marrow stem/progenitor cells. Stem Cell Research & Therapy, 7(1), 59. https://doi.org/10.1186/s13287-016-0311-6.

    Article  Google Scholar 

  24. Kucia, M., Halasa, M., Wysoczynski, M., Baskiewicz-Masiuk, M., Moldenhawer, S., Zuba-Surma, E., … Ratajczak, M. Z. (2007). Morphological and molecular characterization of novel population of CXCR4 + SSEA-4 + Oct-4 + very small embryonic-like cells purified from human cord blood – preliminary report. Leukemia, 21(2), 297–303. https://doi.org/10.1038/sj.leu.2404470.

    Article  CAS  PubMed  Google Scholar 

  25. Liedtke, S., Stephan, M., & Kögler, G. (2008). Oct4 expression revisited: potential pitfalls for data misinterpretation in stem cell research. Biological Chemistry, 389(7), 845–850. https://doi.org/10.1515/BC.2008.098.

    Article  CAS  PubMed  Google Scholar 

  26. Wang, X., & Dai, J. (2010). Concise review: isoforms of Oct4 contribute to the confusing diversity in stem cell biology. Stem Cells, 28(5), 885–893. https://doi.org/10.1002/stem.419.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tseng, P. C., Hou, S. M., Chen, R. J., Peng, H. W., Hsieh, C. F., Kuo, M. L., & Yen, M. L. (2011). Resveratrol promotes osteogenesis of human mesenchymal stem cells by upregulating RUNX2 gene expression via the SIRT1/FOXO3A axis. Journal of Bone and Mineral Research, 26(10), 2552–2563. https://doi.org/10.1002/jbmr.460.

    Article  CAS  PubMed  Google Scholar 

  28. Peltz, L., Gomez, J., Marquez, M., Alencastro, F., Atashpanjeh, N., Quang, T., … Zhao, Y. (2012). Resveratrol exerts dosage and duration dependent effect on human mesenchymal stem cell development. PLoS ONE, 7(5), e37162. https://doi.org/10.1371/journal.pone.0037162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ling, L., Gu, S., & Cheng, Y. (2017). Resveratrol activates endogenous cardiac stem cells and improves myocardial regeneration following acute myocardial infarction. Molecular Medicine Reports, 15(3), 1188–1194. https://doi.org/10.3892/mmr.2017.6143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zuba-surma, E. K., Kucia, M., Dawn, B., Guo, Y., Ratajczak, Z., M., & Bolli, R. (2008). Bone marrow-derived pluripotent very small embryonic-like stem cells (VSELs) are mobilized after acute myocardial infarction. Journal of Molecular and Cellular Cardiology, 44(5), 865–873. https://doi.org/10.1016/j.yjmcc.2008.02.279.Bone.

  31. Wojakowski, W., Tendera, M., Kucia, M., Zuba-Surma, E., Paczkowska, E., Ciosek, J., … Ratajczak, M. Z. (2009). Mobilization of bone marrow-derived Oct-4 + SSEA-4 + very small embryonic-like stem cells in patients with acute myocardial infarction. Journal of the American College of Cardiology, 53(1), 1–9. https://doi.org/10.1016/j.jacc.2008.09.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sebastián, C., Zwaans, B. M. M., Silberman, D. M., Gymrek, M., Goren, A., Zhong, L., … Mostoslavsky, R. (2012). The histone deacetylase SIRT6 Is a tumor suppressor that controls cancer metabolism. Cell, 151(6), 1185–1199. https://doi.org/10.1016/j.cell.2012.10.047.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dasgupta, B., & Milbrandt, J. (2007). Resveratrol stimulates AMP kinase activity in neurons. Proceedings of the National Academy of Sciences, 104(17), 7217–7222. https://doi.org/10.1073/pnas.0610068104.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Tripathi.

Ethics declarations

Conflict of Interest

VT, SC, VJ and AT are affiliated to Epigeneres Biotech Pvt. Ltd. which manufactures and has patented XAR™.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 100 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, V., Chhabria, S., Jadhav, V. et al. Stem Cells and Progenitors in Human Peripheral Blood Get Activated by Extremely Active Resveratrol (XAR™). Stem Cell Rev and Rep 14, 213–222 (2018). https://doi.org/10.1007/s12015-017-9784-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-017-9784-7

Keywords

Navigation