Stem Cell Reviews and Reports

, Volume 14, Issue 2, pp 262–276 | Cite as

Evidence of Extracellular Vesicles Biogenesis and Release in Mouse Embryonic Stem Cells

  • Lilian Cruz
  • Jenny Andrea Arevalo Romero
  • Mariana Brandão Prado
  • Tiago G. Santos
  • Marilene Hohmuth Lopes


Extracellular vesicles (EVs) released by mouse embryonic stem cells (mESCs) are considered a source of bioactive molecules that modulate their microenvironment by acting on intercellular communication. Either intracellular endosomal machinery or their derived EVs have been considered a relevant system of signal circuits processing. Herein, we show that these features are found in mESCs. Ultrastructural analysis revealed structures and organelles of the endosomal system such as coated pits and endocytosis-related vesicles, prominent rough endoplasmic reticulum and Golgi apparatus, and multivesicular bodies (MVBs) containing either few or many intraluminal vesicles (ILVs) that could be released as exosomes to extracellular milieu. Besides, budding vesicles shed from the plasma membrane to the extracellular space is suggestive of microvesicle biogenesis in mESCs. mESCs and mouse blastocyst express specific markers of the Endosomal Sorting Complex Required for Transport (ESCRT) system. Ultrastructural analysis and Nanoparticle Tracking Analysis (NTA) of isolated EVs revealed a heterogeneous population of exosomes and microvesicles released by mESCs. These vesicles contain Wnt10b and the Notch ligand Delta-like 4 (DLL4) and also the co-chaperone stress inducible protein 1 (STI1) and its partner Hsp90. Wnt10b and Dll4 colocalize with EVs biogenesis markers in mESCs. Overall, the present study supports the function of the mESCs endocytic network and their EVs as players in stem cell biology.


Mouse embryonic stem cells Extracellular vesicles Vesicles biogenesis Endosomal trafficking Transmission electron microscopy 



We are very grateful to Dr. Vilma R. Martins, Research Superintendent of International Research Center at A. C. Camargo Cancer Center and her group, specially, Marcos Vinicios Salles Dias and Fernanda Giudice for technical support in NanoSight equipment. We also are thankful to Camila Lopes Ramos from Sirio-Libanes Hospital Teaching and Research Institute for technical support in RNA assays. We also thank Mario Costa Cruz (CEFAP-USP, Confocal Microscopy technician); Gaspar Ferreira de Lima, Edson Rocha de Oliveira, Victor E. Arana-Chavez, Márcia Tanakai, André Aguillera and Rita S. (CEME) for technical assistance in electron microscopy.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Financial Support

This study was supported by Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP, Processes numbers: 2011/13906-2, 2013/22078-1 and 2014/17385-5).


  1. 1.
    Nichols, J., & Smith, A. (2011). The origin and identity of embryonic stem cells. Development (Cambridge, England), 138(1), 3–8.CrossRefGoogle Scholar
  2. 2.
    Nichols, J., & Smith, A. (2012). Pluripotency in the embryo and in culture. Cold Spring Harbor Perspectives in Biology, 4(8), a008128.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Li, M., & Belmonte, J. C. I. (2017). Ground rules of the pluripotency gene regulatory network. Nature Reviews Genetics. Scholar
  4. 4.
    Quesenberry, P. J., & Aliotta, J. M. (2008). The paradoxical dynamism of marrow stem cells: Considerations of stem cells, niches, and microvesicles. Stem Cell Reviews, 4(3), 137–147.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Keung, A. J., Kumar, S., & Schaffer, D. V. (2010). Presentation counts: microenvironmental regulation of stem cells by biophysical and material cues. Annual Review of Cell and Developmental Biology, 26, 533–556.PubMedCrossRefGoogle Scholar
  6. 6.
    Camussi, G., Deregibus, M. C., & Cantaluppi, V. (2013). Role of stem-cell-derived microvesicles in the paracrine action of stem cells. Biochemical Society Transactions, 41(1), 283–287.PubMedCrossRefGoogle Scholar
  7. 7.
    Sthanam, L. K., et al. (2017). Biophysical regulation of mouse embryonic stem cell fate and genomic integrity by feeder derived matrices. Biomaterials, 119, 9–22.PubMedCrossRefGoogle Scholar
  8. 8.
    Choi, D. S., Kim, D. K., Kim, Y. K., & Gho, Y. S. (2013). Proteomics, transcriptomics and lipidomics of exosomes and ectosomes. Proteomics, 13(10–11), 1554–1571.PubMedCrossRefGoogle Scholar
  9. 9.
    Phinney, D. G., et al. (2015). Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nature Communications, 6, 8472.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Maas, S. L. N., Breakefield, X. O., & Weaver, A. M. (2016). Extracellular Vesicles: Unique Intercellular Delivery Vehicles. Trends in Cell Biology. Scholar
  11. 11.
    Witwer, K. W., et al. (2013). Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. Journal Extracell vesicles, 2, 1–25.CrossRefGoogle Scholar
  12. 12.
    Nickel, W. (2005). Unconventional secretory routes: Direct protein export across the plasma membrane of mammalian cells. Traffic (Copenhagen, Denmark), 6(8), 607–614.CrossRefGoogle Scholar
  13. 13.
    Cocucci, E., Racchetti, G., & Meldolesi, J. (2009). Shedding microvesicles: artefacts no more. Trends in Cell Biology, 19(2), 43–51.PubMedCrossRefGoogle Scholar
  14. 14.
    Mathivanan, S., Ji, H., & Simpson, R. J. (2010). Exosomes: Extracellular organelles important in intercellular communication. Journal of Proteomics, 73(10), 1907–1920.PubMedCrossRefGoogle Scholar
  15. 15.
    Raposo, G., & Stoorvogel, W. (2013). Extracellular vesicles: Exosomes, microvesicles, and friends. The Journal of Cell Biology, 200(4), 373–383.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Kowal, J., et al. (2016) Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proceedings of the National Academy of Sciences of the United States of America 113(8):E968-77.Google Scholar
  17. 17.
    Sorkin, A., & von Zastrow, M. (2002). Signal transduction and endocytosis: close encounters of many kinds. Nature Reviews. Molecular Cell Biology, 3(8), 600–614.PubMedCrossRefGoogle Scholar
  18. 18.
    Scita, G., & Di Fiore, P. P. (2010). The endocytic matrix. Nature, 463(7280), 464–473.PubMedCrossRefGoogle Scholar
  19. 19.
    Dobrowolski, R., & De Robertis, E. M. (2011). Endocytic control of growth factor signalling: multivesicular bodies as signalling organelles. Nature Reviews Molecular Cell Biology, 13(1), 53–60.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Li, L., et al. (2010). A unique interplay between Rap1 and E-cadherin in the endocytic pathway regulates self-renewal of human embryonic stem cells. Stem cells (Dayton, Ohio), 28(2), 247–257.Google Scholar
  21. 21.
    Théry, C., Amigorena, S., Raposo, G., & Clayton, A. (2006). Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Current Protocols in Cell Biology Chap, 3, Unit 3.22.Google Scholar
  22. 22.
    Zanata, S. M., et al. (2002). Stress-inducible protein 1 is a cell surface ligand for cellular prion that triggers neuroprotection. EMBO Journal, 21(13), 3307–3316.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Kobayashi, T., et al. (2002). Separation and characterization of late endosomal membrane domains. The Journal of Biological Chemistry, 277(35), 32157–32164.PubMedCrossRefGoogle Scholar
  24. 24.
    Bissig, C., & Gruenberg, J. (2013). Lipid sorting and multivesicular endosome biogenesis. Cold Spring Harbor Perspectives in Biology, 5(10), a016816.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Hurley, J. H., & Hanson, P. I. (2010). Membrane budding and scission by the ESCRT machinery: it’s all in the neck. Nature Reviews. Molecular Cell Biology, 11(8), 556–566.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Hanson, P. I., & Cashikar, A. (2012). Multivesicular Body Morphogenesis. Annual Review of Cell and Developmental Biology, 28(1), 337–362.PubMedCrossRefGoogle Scholar
  27. 27.
    Wollert, T., Wunder, C., Lippincott-schwartz, J., Hurley, J. H. (2009). Membrane scission by the ESCRT-III complex. Nature, 458(7235), 172–177.Google Scholar
  28. 28.
    Stenmark, H. (2009). Rab GTPases as coordinators of vesicle traffic. Nature Reviews. Molecular Cell Biology, 10(8), 513–525.PubMedCrossRefGoogle Scholar
  29. 29.
    Villarroya-Beltri, C., Baixauli, F., Gutiérrez-Vázquez, C., Sánchez-Madrid, F., & Mittelbrunn, M. (2014). Sorting it out: Regulation of exosome loading. Seminars in Cancer Biology, 28(1), 3–13.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Kobayashi, T., et al. (1998). A lipid associated with the antiphospholipid syndrome regulates endosome structure and function. Nature, 392(6672), 193–197.PubMedCrossRefGoogle Scholar
  31. 31.
    Bissig, C., & Gruenberg, J. (2014). ALIX and the multivesicular endosome: ALIX in Wonderland. Trends in Cell Biology, 24(1), 19–25.PubMedCrossRefGoogle Scholar
  32. 32.
    Hajj, G. N. M., et al. (2013). The unconventional secretion of stress-inducible protein 1 by a heterogeneous population of extracellular vesicles. Cellular and Molecular Life Sciences, 70(17), 3211–3227.PubMedCrossRefGoogle Scholar
  33. 33.
    Filipczyk, A., et al. (2015). Network plasticity of pluripotency transcription factors in embryonic stem cells. Nature Cell Biology, 17(10), 1235–1246.PubMedCrossRefGoogle Scholar
  34. 34.
    Bernadskaya, Y., & Christiaen, L. (2016). Transcriptional Control of Developmental Cell Behaviors. Annual Review of Cell and Developmental Biology, 32(1), 77–101.PubMedCrossRefGoogle Scholar
  35. 35.
    Tsanov, K. M., et al. (2016). LIN28 phosphorylation by MAPK/ERK couples signalling to the post-transcriptional control of pluripotency. Nature Cell Biology. Scholar
  36. 36.
    Acharya, D., et al. (2017). KAT-Independent Gene Regulation by Tip60 Promotes ESC Self-Renewal but Not Pluripotency. Cell Reports, 19(4), 671–679.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Kalkan, T., et al. (2017). Tracking the embryonic stem cell transition from ground state pluripotency. Development (Cambridge, England), 144(7), 1221–1234.CrossRefGoogle Scholar
  38. 38.
    Ratajczak, J., et al. (2006). Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, U. K, 20(5), 847–856.CrossRefGoogle Scholar
  39. 39.
    Lakkaraju, A., & Rodriguez-Boulan, E. (2008). Itinerant exosomes: emerging roles in cell and tissue polarity. Trends in Cell Biology, 18(5), 199–209.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Yuan, A., et al. (2009). Transfer of MicroRNAs by Embryonic Stem Cell Microvesicles. PLoS One, 4(3), e4722.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Khan, M., et al. (2015). Embryonic Stem Cell-Derived Exosomes Promote Endogenous Repair Mechanisms and Enhance Cardiac Function Following Myocardial Infarction. Circulation Research, 117(1), 52–64.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Murk, J. L., Stoorvogel, W., Kleijmeer, M. J., & Geuze, H. J. (2002). The plasticity of multivesicular bodies and the regulation of antigen presentation. Seminars in Cell & Developmental Biology, 13(4), 303–311.CrossRefGoogle Scholar
  43. 43.
    Von Bartheld, C. S., & Altick, A. L. (2011). Multivesicular bodies in neurons: Distribution, protein content, and trafficking functions. Progress in Neurobiology, 93(3), 313–340.CrossRefGoogle Scholar
  44. 44.
    Nichols, J., & Smith, A. (2012). Pluripotency in the embryo and in culture [review]. Cold Spring Harbor Perspectives in Biology, 4(8), 1–14.CrossRefGoogle Scholar
  45. 45.
    Williams, R. L., et al. (1988). Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature, 336(6200), 684–687.PubMedCrossRefGoogle Scholar
  46. 46.
    Raz, R., Lee, C. K., Cannizzaro, L. A., d’Eustachio, P., & Levy, D. E. (1999) Essential role of STAT3 for embryonic stem cell pluripotency. Proceedings of the National Academy of Sciences of the United States of America 96(6):2846–51.Google Scholar
  47. 47.
    Xu, H., Ang, Y.-S., Sevilla, A., Lemischka, I. R., & Ma’ayan, A. (2014). Construction and validation of a regulatory network for pluripotency and self-renewal of mouse embryonic stem cells. PLoS Computational Biology, 10(8), e1003777.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Sinha, A., Khadilkar, R. J., Vinay, K. S., Sinha, A. R., & Inamdar, M. S. (2013). Conserved regulation of the JAK/STAT pathway by the endosomal protein asrij maintains stem cell potency. Cell Reports, 4(4), 649–658.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Ying, Q.-L., et al. (2008). The ground state of embryonic stem cell self-renewal. Nature, 453(May), 519–523.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Dunn, S.-J., Martello, G., Yordanov, B., Emmott, S., & Smith a, G. (2014). Defining an essential transcription factor program for naïve pluripotency. Science, 344(6188), 1156–1160.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Taelman, V. F., et al. (2010). Wnt Signaling Requires Sequestration of Glycogen Synthase Kinase 3 inside Multivesicular Endosomes. Cell, 143(7), 1136–1148.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Roxrud, I., Stenmark, H., & Malerød, L. (2010). ESCRT & Co. Biology of the Cell, 102(5), 293–318.PubMedCrossRefGoogle Scholar
  53. 53.
    Henne, W. M., Buchkovich, N. J., & Emr, S. D. (2011). The ESCRT Pathway. Developmental Cell, 21(1), 77–91.PubMedCrossRefGoogle Scholar
  54. 54.
    Matsuo, H., et al. (2004). Role of LBPA and Alix in multivesicular liposome formation and endosome organization. Science, 303(5657), 531–534.PubMedCrossRefGoogle Scholar
  55. 55.
    Falguières, T., Luyet, P. P., Bissig, C., Scott, C. C., Velluz, M. C., & Gruenberg, J. (2008). In vitro budding of intralumenal vesicles into late endosomes is regulated by Alix and Tsg101. Molecular Biology of the Cell, 19(11), 4942–4955.
  56. 56.
    Denzer, K., et al. (2000). Follicular dendritic cells carry MHC class II-expressing microvesicles at their surface. Journal of Immunology, 165, 1259–1265.CrossRefGoogle Scholar
  57. 57.
    Wubbolts, R., et al. (2003). Proteomic and biochemical analyses of human B cell-derived exosomes: Potential implications for their function and multivesicular body formation. The Journal of Biological Chemistry, 278(13), 10963–10972.PubMedCrossRefGoogle Scholar
  58. 58.
    Lässle, M., Blatch, G. L., Kundra, V., Takatori, T., & Zetter, B. R. (1997). Stress-inducible, murine protein mSTI1: Characterization of binding domains for heat shock proteins and in vitro phosphorylation by different kinases. The Journal of Biological Chemistry, 272(3), 1876–1884.PubMedCrossRefGoogle Scholar
  59. 59.
    Lee, C.-T., Graf, C., Mayer, F. J., Richter, S. M., & Mayer, M. P. (2012). Dynamics of the regulation of Hsp90 by the co-chaperone Sti1. The EMBO Journal, 31(6), 1518–1528.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Schmid, A. B., et al. (2012). The architecture of functional modules in the Hsp90 co-chaperone Sti1/Hop. The EMBO Journal, 31(6), 1506–1517.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Lancaster, G. I., & Febbraio, M. A. (2005). Exosome-dependent trafficking of HSP70: A novel secretory pathway for cellular stress proteins. The Journal of Biological Chemistry, 280(24), 23349–23355.PubMedCrossRefGoogle Scholar
  62. 62.
    McCready, J., et al. (2010). Secretion of extracellular hsp90α via exosomes increases cancer cell motility: a role for plasminogen activation. BMC cancer, 10(1), 294.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Longshaw, V. M., Baxter, M., Prewitz, M., & Blatch, G. L. (2009). Knockdown of the co-chaperone Hop promotes extranuclear accumulation of Stat3 in mouse embryonic stem cells. European Journal of Cell Biology, 88(3), 153–166.PubMedCrossRefGoogle Scholar
  64. 64.
    Prinsloo, E., Setati, M. M., Longshaw, V. M., & Blatch, G. L. (2009) Chaperoning stem cells: A role for heat shock proteins in the modulation of stem cell self-renewal and differentiation?. BioEssays 31(4):370–377.Google Scholar
  65. 65.
    Setati, M. M., et al. (2010). Leukemia inhibitory factor promotes Hsp90 association with STAT3 in mouse embryonic stem cells. IUBMB Life, 62(1), 61–66.PubMedGoogle Scholar
  66. 66.
    Yuan, A., et al. (2009) Transfer of microRNAs by embryonic stem cell microvesicles. PLoS One 4(3).
  67. 67.
    Katsman, D., Stackpole, E. J., Domin, D. R., & Farber, D. B. (2012). Embryonic stem cell-derived microvesicles induce gene expression changes in Müller cells of the retina. PLoS One, 7(11), e50417.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Dudu, V., Pantazis, P., & González-Gaitán, M. (2004). Membrane traffic during embryonic development: Epithelial formation, cell fate decisions and differentiation. Current Opinion in Cell Biology, 16(4), 407–414.PubMedCrossRefGoogle Scholar
  69. 69.
    Matusek, T., et al. (2014). The ESCRT machinery regulates the secretion and long-range activity of Hedgehog. Nature, 516(7529), 99–103.PubMedCrossRefGoogle Scholar
  70. 70.
    Zhang, L., & Wrana, J. L. (2014). The emerging role of exosomes in Wnt secretion and transport. Current Opinion in Genetics & Development, 27, 14–19.CrossRefGoogle Scholar
  71. 71.
    Parchure, A., Vyas, N., Ferguson, C., Parton, R. G., & Mayor, S. (2015). Oligomerization and endocytosis of Hedgehog is necessary for its efficient exovesicular secretion. Molecular Biology of the Cell, 26(25), 4700–4717.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Rogers, K. W., & Schier, A. F. (2011). Morphogen Gradients: From Generation to Interpretation. Annual Review of Cell and Developmental Biology, 27(1), 377–407.PubMedCrossRefGoogle Scholar
  73. 73.
    Wilcockson, S. G., Sutcliffe, C., & Ashe, H. L. (2016). Control of signaling molecule range during developmental patterning. Cellular and Molecular Life Sciences. Scholar
  74. 74.
    Desrochers, L. M., Bordeleau, F., Reinhart-King, C. A., Cerione, R. A., & Antonyak, M. A. (2016). Microvesicles provide a mechanism for intercellular communication by embryonic stem cells during embryo implantation. Nature Communications, 7, 11958.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    McGough, I. J., & Vincent, J.-P. (2016). Exosomes in developmental signalling. Development (Cambridge, England), 143(14), 2482–2493.CrossRefGoogle Scholar
  76. 76.
    Sheldon, H., et al. (2010). New mechanism for Notch signaling to endothelium at a distance by delta-like 4 incorporation into exosomes. Blood, 116(13), 2385–2394.PubMedCrossRefGoogle Scholar
  77. 77.
    Sharghi-Namini, S., Tan, E., Ong, L.-L.S., Ge, R., & Asada, H. H. (2014). Dll4-containing exosomes induce capillary sprout retraction in a 3D microenvironment. Science Reporter, 4, 4031.CrossRefGoogle Scholar
  78. 78.
    Gross, J. C., Chaudhary, V., Bartscherer, K., & Boutros, M. (2012). Active Wnt proteins are secreted on exosomes. Science Reporter, 14(10), 1036–1045.Google Scholar
  79. 79.
    Chen, Y., et al. (2017). Aberrant low expression of p85α in stromal fibroblasts promotes breast cancer cell metastasis through exosome-mediated paracrine Wnt10b. Oncogene, 36(33), 4692–4705.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Lilian Cruz
    • 1
  • Jenny Andrea Arevalo Romero
    • 1
  • Mariana Brandão Prado
    • 1
  • Tiago G. Santos
    • 2
  • Marilene Hohmuth Lopes
    • 1
  1. 1.Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical SciencesUniversity of São PauloSao PauloBrazil
  2. 2.International Research CenterA.C. Camargo Cancer CenterSao PauloBrazil

Personalised recommendations