Stem Cell Reviews and Reports

, Volume 13, Issue 4, pp 482–490 | Cite as

L-Glutamine in vitro Modulates some Immunomodulatory Properties of Bone Marrow Mesenchymal Stem Cells

  • Guilherme Galvão dos Santos
  • Araceli Aparecida Hastreiter
  • Talita Sartori
  • Primavera Borelli
  • Ricardo Ambrósio Fock
Article
  • 200 Downloads

Abstract

Glutamine (GLUT) is a nonessential amino acid that can become conditionally essential under stress conditions, being able to act in the modulation of the immune responses. Mesenchymal stem cells (MSCs) are known to their capability in the modulation of immune responses through cell-cell contact and by the secretion of soluble factors. Considering that GLUT is an immunonutrient and little is known about the influence of GLUT on the capability of MSCs to modulate immune cells, this work aims to investigate how variations in GLUT concentrations in vitro could affect some immunomodulatory properties of MSCs. In order to evaluate the effects of GLUT on MSCs immunomodulatory properties, cell proliferation rates, the expression of NFκB and STAT-3, and the production of IL-1β, IL-6, IL-10, TGF-β and TNF-α by MSCs were assessed. Based on our findings, GLUT at high doses (10 mM) augmented the proliferation of MSCs and modulated immune responses by decreasing levels of pro-inflammatory cytokines, such as IL-1β and IL-6, and by increasing levels of anti-inflammatory cytokines IL-10 and TGF-β. In addition, MSCs cultured in higher GLUT concentrations (10 mM) expressed lower levels of NF-κB and higher levels of STAT-3. Furthermore, conditioned media from MSCs cultured at higher GLUT concentrations (10 mM) reduced lymphocyte and macrophage proliferation, increased IL-10 production by both cells types, and decreased IFN-γ production by lymphocytes. Overall, this study showed that 10 mM of GLUT is able to modify immunomodulatory properties of MSCs.

Keywords

L-Glutamine Mesenchymal stem cells Macrophages and lymphocytes Cytokines Immunomodulation 

Notes

Acknowledgements

The authors thank FAPESP for financial support. Fock RA and Borelli P are fellows of the Conselho Nacional de Pesquisa e Tecnologia (CNPq).

Compliance with Ethical Standards

Conflict of Interest

The authors declare no potential conflicts of interest.

References

  1. 1.
    Newsholme, P. (2001). Why is L-glutamine metabolism important to cells of the immune system in health, postinjury, surgery or infection? Journal of Nutrition, 131(9), 2515S–2522S.PubMedGoogle Scholar
  2. 2.
    Tapiero, H., Mathé, G., Couvreur, P., Tew, K.D. (2002). II. Glutamine and glutamate. Biomedicine & Pharmacotherapy, 56(9), 446–457.CrossRefGoogle Scholar
  3. 3.
    Matés, J. M., Segura, J. A., Martín-Rufián, M., Campos-Sandoval, J. A., Alonso, F. J., & Márquez, J. (2013). Glutaminase isoenzymes as key regulators in metabolic and oxidative stress against cancer. Current Molecular Medicine, 13(4), 514–534.CrossRefPubMedGoogle Scholar
  4. 4.
    Brasse-Lagnel, C. G., Lavoinne, A. M., & Husson, A. S. (2010). Amino acid regulation of mammalian gene expression in the intestine. Biochimie, 92(7), 729–735.CrossRefPubMedGoogle Scholar
  5. 5.
    Hakvoort, T. B., He, Y., Kulik, W., et al. (2017). Pivotal role of glutamine synthetase in ammonia detoxification. Hepatology, 65(1), 281–293.CrossRefPubMedGoogle Scholar
  6. 6.
    Zhang, B., Lin, M., Yu, C., et al. (2016). Alanyl-glutamine supplementation regulates mTOR and ubiquitin proteasome proteolysis signaling pathways in piglets. Nutrition, 32(10), 1123–1131.CrossRefPubMedGoogle Scholar
  7. 7.
    Calder, P. C., & Yaqoob, P. (1999). Glutamine and the immune system. Amino Acids, 17(3), 227–241.CrossRefPubMedGoogle Scholar
  8. 8.
    Holecek, M. (2013). Side effects of long-term glutamine supplementation. Journal of Parenteral and Enteral Nutrition, 37(5), 607–616.CrossRefPubMedGoogle Scholar
  9. 9.
    Kim, H. (2011). Glutamine as an immunonutrient. Yonsei Medical Journal, 52(6), 892–897.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ito, K., & Suda, T. (2014). Metabolic requirements for the maintenance of self-renewing stem cells. Nature Reviews Molecular Cell Biology, 15(4), 243–256.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Friedenstein, A. J., Gorskaja, J. F., & Kulagina, N. N. (1976). Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Experimental Hematology, 4(5), 267–274.PubMedGoogle Scholar
  12. 12.
    Caplan, A. (2005). Review: Mesenchymal stem cells: Cell-based reconstructive therapy in orthopedics. Tissue Engineering, 11(7–8), 1198–1211.CrossRefPubMedGoogle Scholar
  13. 13.
    García-García, A., de Castillejo, C. L., & Méndez-Ferrer, S. (2015). BMSCs and hematopoiesis. Immunology Letters, 168(2), 129–135.CrossRefPubMedGoogle Scholar
  14. 14.
    Bernardo, M. E., & Fibbe, W. E. (2015). Mesenchymal stromal cells and hematopoietic stem cell transplantation. Immunology Letters, 168(2), 215–221.CrossRefPubMedGoogle Scholar
  15. 15.
    Zhang, J., Huang, X., Wang, H., et al. (2015). The challenges and promises of allogeneic mesenchymal stem cells for use as a cell-based therapy. Stem Cell Research & Therapy, 1(6), 234.CrossRefGoogle Scholar
  16. 16.
    Lee, M. W., Ryu, S., Kim, D. S., Sung, K. W., Koo, H. H., & Yoo, K. H. (2015). Strategies to improve the immunosuppressive properties of human mesenchymal stem cells. Stem Cell Research & Therapy, 7(6), 179.CrossRefGoogle Scholar
  17. 17.
    Dos Santos, G. G., Batool, S., Hastreiter, A., et al. (2016). The influence of protein malnutrition on biological and immunomodulatory aspects of bone marrow mesenchymal stem cells. Clinical Nutrition, S0261-5614(16), 30202–30203.Google Scholar
  18. 18.
    Eagle, H., Oyama, V. I., Levy, M., Horton, C. L., & Fleischman, R. (1956). The growth response of mammalian cells in tissue culture to L-glutamine and L-glutamic acid. Journal of Biological Chemistry, 218, 607–616.PubMedGoogle Scholar
  19. 19.
    Wischmeyer, P. E., Riehm, J., Singleton, K. D., et al. (2003). Glutamine attenuates tumor necrosis factor-alpha release and enhances heat shock protein 72 in human peripheral blood mononuclear cells. Nutrition, 19, 1–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Chandra, R. K. (1987). Nutrition and immunity: Practical applications of Research findings. Canadian Family Physician, 33, 1417–1420.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Higuera, G. A., Schop, D., Spitters, T. W., et al. (2012). Patterns of amino acid metabolism by proliferating human mesenchymal stem cells. Tissue Engineering Part a, 18(5–6), 654–664.CrossRefPubMedGoogle Scholar
  22. 22.
    Schop, D., Janssen, F. W., Borgart, E., de Bruijn, J. D., & van Dijkhuizen-Radersma, R. (2008). Expansion of mesenchymal stem cells using a microcarrier-based cultivation system: Growth and metabolism. Journal of Tissue Engineering and Regenerative Medicine, 2(2–3), 126–135.CrossRefPubMedGoogle Scholar
  23. 23.
    Grivennikov, S. I., & Karin, M. (2010). Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine & Growth Factor Reviews, 21(1), 11–19.CrossRefGoogle Scholar
  24. 24.
    De Miguel, M. P., Fuentes-Julián, S., & Blázquez-Martínez, A. (2012). Immunosuppressive properties of mesenchymal stem cells: Advances and applications. Current Molecular Medicine, 12(5), 574–591.CrossRefPubMedGoogle Scholar
  25. 25.
    Kyurkchiev, D., Bochev, I., Ivanova-Todorova, E., et al. (2014). Secretion of immunoregulatory cytokines by mesenchymal stem cells. World J Stem Cells, 6(5), 552–570.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Murray, P. J. (2005). The primary mechanism of the IL-10-regulated antiinflammatory response is to selectively inhibit transcription. Proceedings of the National Academy of Sciences of the United States of America, 102(24), 8686–8691.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Levy, D. E., & Lee, C. K. (2002). What does Stat3 do? Journal of Clinical Investigation, 109(9), 1143–1148.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Riley, J. K., Takeda, K., Akira, S., & Schreiber, R. D. (1999). Interleukin-10 receptor signaling through the JAK-STAT pathway. Requirement for two distinct receptor-derived signals for anti-inflammatory action. Journal of Biological Chemistry, 274(23), 16513–16521.CrossRefPubMedGoogle Scholar
  29. 29.
    Bonecini-Almeida, M. G., Ho, J. L., Boechat, N., et al. (2004). Down-modulation of lung immune responses by interleukin-10 and transforming growth factor beta (TGF-beta) and analysis of TGF-beta receptors I and II in active tuberculosis. Infection and Immunity, 72(5), 2628–2634.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ghannam, S., Bouffi, C., Djouad, F., Jorgensen, C., & Noël, D. (2010). Immunosuppression by mesenchymal stem cells: Mechanisms and clinical applications. Stem Cell Research & Therapy, 1(1), 2.CrossRefGoogle Scholar
  31. 31.
    Glennie, S., Soeiro, I., Dyson, P. J., Lam, E. W., & Dazzi, F. (2005). Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood, 105(7), 2821–2827.CrossRefPubMedGoogle Scholar
  32. 32.
    Groux, H., & Cottrez, F. (2003). The complex role of interleukin-10 in autoimmunity. Journal of Autoimmunity, 20(4), 281–285.CrossRefPubMedGoogle Scholar
  33. 33.
    Scapini, P., Lamagna, C., Hu, Y., et al. (2011). B cell-derived IL-10 suppresses inflammatory disease in Lyn-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 108(41), E823–E832.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Sabat, R., Grutz, G., Warszawska, K., et al. (2010). Biology of interleukin-10. Cytokine & Growth Factor Reviews, 21(5), 331–344.CrossRefGoogle Scholar
  35. 35.
    Di Nicola, M., Carlo-Stella, C., Magni, M., et al. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 99(10), 3838–3843.CrossRefPubMedGoogle Scholar
  36. 36.
    Aggarwal, S., & Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105(4), 1815–1822.CrossRefPubMedGoogle Scholar
  37. 37.
    Sun, L., Akiyama, K., Zhang, H., et al. (2009). Mesenchymal stem cell transplantation reverses multiorgan dysfunction in systemic lupus erythematosus mice and humans. Stem Cells, 27(6), 1421–1432.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Najar, M., Rouas, R., & Raicevic, G. (2009). Mesenchymal stromal cells promote or suppress the proliferation of T lymphocytes from cord blood and peripheral blood: The importance of low cell ratio and role of interleukin-6. Cytotherapy, 11(5), 570–583.CrossRefPubMedGoogle Scholar
  39. 39.
    Liu, X. J., Zhang, J. F., & Sun, B. (2009). Reciprocal effect of mesenchymal stem cell on experimental autoimmune encephalomyelitis is mediated by transforming growth factor-beta and interleukin-6. Clinical & Experimental Immunology, 158(1), 37–44.CrossRefGoogle Scholar
  40. 40.
    Steinman, R. M., & Banchereau, J. (2007). Taking dendritic cells into medicine. Nature, 449(7161), 419–426.CrossRefPubMedGoogle Scholar
  41. 41.
    Maggini, J., Mirkin, G., Bognanni, I., et al. (2010). Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PloS One, 5, e9252.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Zhang, Q. Z., Su, W. R., Shi, S. H., et al. (2010). Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing. Stem Cells, 28(10), 1856–1868.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    O'Garra, A., & Murphy, K. M. (2009). From IL-10 to IL-12: How pathogens and their products stimulate APCs to induce T(H)1 development. Nature Immunology, 10(9), 929–932.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Guilherme Galvão dos Santos
    • 1
  • Araceli Aparecida Hastreiter
    • 1
  • Talita Sartori
    • 1
  • Primavera Borelli
    • 1
  • Ricardo Ambrósio Fock
    • 1
  1. 1.Laboratory of Experimental Hematology, Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical SciencesUniversity of São PauloSão PauloBrazil

Personalised recommendations