Stem Cell Reviews and Reports

, Volume 13, Issue 4, pp 499–512 | Cite as

Rapid Serum-Free Isolation of Oligodendrocyte Progenitor Cells from Adult Rat Spinal Cord

  • John Bianco
  • Dario Carradori
  • Ronald Deumens
  • Anne des Rieux


Oligodendrocyte progenitor cells (OPCs) play a pivotal role in both health and disease within the central nervous system, with oligodendrocytes, arising from resident OPCs, being the main myelinating cell type. Disruption in OPC numbers can lead to various deleterious health defects. Numerous studies have described techniques for isolating OPCs to obtain a better understanding of this cell type and to open doors for potential treatments of injury and disease. However, the techniques used in the majority of these studies involve several steps and are time consuming, with current culture protocols using serum and embryonic or postnatal cortical tissue as a source of isolation. We present a primary culture method for the direct isolation of functional adult rat OPCs, identified by neuron-glial antigen 2 (NG2) and platelet derived growth factor receptor alpha (PDGFrα) expression, which can be obtained from the adult spinal cord. Our method uses a simple serum-free cocktail of 3 growth factors – FGF2, PDGFAA, and IGF-I, to expand adult rat OPCs in vitro to 96% purity. Cultured cells can be expanded for at least 10 passages with very little manipulation and without losing their phenotypic progenitor cell properties, as shown by immunocytochemistry and RT-PCR. Cultured adult rat OPCs also maintain their ability to differentiate into GalC positive cells when incubated with factors known to stimulate their differentiation. This new isolation method provides a new source of easily accessible adult stem cells and a powerful tool for their expansion in vitro for studies aimed at central nervous system repair.


Progenitor cells Adult spinal cord CNS Differentiation Spinal cord injury 



The authors are recipients of subsidies from the Fonds National de la Recherche Scientifique (FNRS/FRSM) as well as from the Fonds Spéciaux de Recherche Scientifique (FSR, UCL). Supported by European Regional Development Fund – Project FNUSA-ICRC (No. CZ.1.05/1.1.00/02.0123) and by the project ICRC-ERA-HumanBridge (No. 316345) funded by the 7th Framework Programme of the European Union. Anne des Rieux is a F.R.S.-FNRS Research Associate and a recipient of grants from IRP and Fondation Charcot Stichting.

Compliance with Ethical Standards

Competing Interests

The authors declare that they have no competing interests.

Supplementary material

12015_2017_9742_Fig7_ESM.gif (34 kb)
Supplementary Data 1

Spontaneous differentiation of NG2+, PDGFrα+ OPCs into GalC+ oligodendrocytes was observed in approximately 3% of cultured cells under normal growth conditions (GIF 34 kb)

12015_2017_9742_MOESM1_ESM.tif (1.3 mb)
High Resolution Image (TIFF 1297 kb)


  1. 1.
    Weiss, S., Dunne, C., Hewson, J., Wohl, C., Wheatley, M., Peterson, A., & Reynolds, B. (1996). Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. The Journal of Neuroscience, 16, 7599–7609.PubMedGoogle Scholar
  2. 2.
    Wagers, A. (2012). The stem cell niche in regenerative medicine. Cell Stem Cell, 10, 362–369.CrossRefPubMedGoogle Scholar
  3. 3.
    Gage, F. (1998). Stem cells of the central nervous system. Current Opinion in Neurobiology, 8, 671–676.CrossRefPubMedGoogle Scholar
  4. 4.
    Gage, F., Ray, J., & Fisher, L. (1995). Isolation, characterization, and use of stem cells from the CNS. Annual Review of Neuroscience, 18, 159–192.CrossRefPubMedGoogle Scholar
  5. 5.
    Martens, D., Tropepe, V., & van der Kooy, D. (2000). Separate proliferation kinetics of fibroblast growth factor-responsive and epidermal growth factor-responsive neural stem cells within the embryonic forebrain germinal zone. The Journal of Neuroscience, 20, 1085–1095.PubMedGoogle Scholar
  6. 6.
    McKay, R. (1997). Stem cells in the central nervous system. Science, 276, 66–71.CrossRefPubMedGoogle Scholar
  7. 7.
    Barnabé-Heider, F., Göritz, C., Sabelström, H., Takebayashi, H., Pfrieger, F., Meletis, K., & Frisén, J. (2010). Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell, 7, 470–482.CrossRefPubMedGoogle Scholar
  8. 8.
    Kulbatski, I., & Tator, C. (2009). Region-specific differentiation potential of adult rat spinal cord neural stem/precursors and their plasticity in response to in vitro manipulation. The Journal of Histochemistry and Cytochemistry, 57, 405–423.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lipson, A., & Horner, P. (2002). Potent possibilities: Endogenous stem cells in the adult spinal cord. In L. McKerracher, G. Doucet, & S. Rossignol (Eds.), Spinal cord trauma: Regeneration, neural repair and functional recovery (pp. 283–297). Amsterdam: Elsevier Science B. V.CrossRefGoogle Scholar
  10. 10.
    Takebayashi, H., & Ikenaka, K. (2015). Oligodendrocyte generation during mouse development. Glia, 63, 1350–1356.CrossRefPubMedGoogle Scholar
  11. 11.
    Kulbatski, I., Mothe, A., Parr, A., Kim, H., Kang, C., Bozkurt, G., & Tator, C. (2008). Glial precursor cell transplantation therapy for neurotrauma and multiple sclerosis. Progress in Histochemistry and Cytochemistry, 43, 123–176.CrossRefPubMedGoogle Scholar
  12. 12.
    Mothe, A., Zahir, T., Santaguida, C., Cook, D., & Tator, C. (2011). Neural stem/progenitor cells from the adult human spinal cord are multipotent and self-renewing and differentiate after transplantation. PloS One, 6, e27079.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kulbatski, I., Mothe, A., Keating, A., Hakamata, Y., Koboyashi, E., & Tator, C. (2007). Oligodendrocytes and radial glia derived from adult rat spinal cord progenitors: morphological and immunocytochemical characterization. The Journal of Histochemistry and Cytochemistry, 55, 209–222.CrossRefPubMedGoogle Scholar
  14. 14.
    Götz, M. (2003). Glial cells generate neurons--master control within CNS regions: developmental perspectives on neural stem cells. The Neuroscientist, 9, 379–397.CrossRefPubMedGoogle Scholar
  15. 15.
    Bechler, M., Byrne, L., & Ffrench-Constant, C. (2015). CNS myelin sheath lengths are an intrinsic property of oligodendrocytes. Current Biology, 25, 2411–2416.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Nishiyama, A. (2007). Polydendrocytes: NG2 cells with many roles in development and repair of the CNS. The Neuroscientist, 13, 62–76.CrossRefPubMedGoogle Scholar
  17. 17.
    Goh, E., Ma, D., Ming, G., & Song, H. (2003). Adult neural stem cells and repair of the adult central nervous system. Journal of Hematotherapy & Stem Cell Research, 12, 671–679.CrossRefGoogle Scholar
  18. 18.
    Dugas, J., & Emery, B. (2013). Purification and culture of oligodendrocyte lineage cells. Cold Spring Harbor Protocols, 9, 810–814.Google Scholar
  19. 19.
    Zhu, B., Zhao, C., Young, F., Franklin, R., & Song, B. (2014). Isolation and long-term expansion of functional, myelilnating oligodendrocyte progenitor cells from neonatal brain. Current Protocols in Stem Cell Biology, 31, 2D.17.11–12D.17.15.Google Scholar
  20. 20.
    Heise, C., & Kayalioglu, G. (2009). Cytoarchitecture of the spinal cord. In: C. Watson, G. Paxinos and G. Kayalloglu (Ed.), The spinal cord: a Christopher and Dana Reeve foundation text and atlas. London: Elsevier.Google Scholar
  21. 21.
    Metz, G., Curt, A., van de Meent, H., Klusman, I., Schwab, M., & Dietz, V. (2000). Validation of the weight-drop contusion model in rats: a comparative study of human spinal cord injury. Journal of Neurotrauma, 17, 1–17.CrossRefPubMedGoogle Scholar
  22. 22.
    Noll, E., & Miller, R. (1993). Oligodendrocyte precursors originate at the ventral ventricular zone dorsal to the ventral midline region in the embryonic rat spinal cord. Development, 118, 563–573.PubMedGoogle Scholar
  23. 23.
    Hajihosseini, M., Tham, T., & Dubois-Dalcq, M. (1996). Origin of oligodendrocytes within the human spinal cord. The Journal of Neuroscience, 16, 7981–7994.PubMedGoogle Scholar
  24. 24.
    Heurtault, B., Saulnier, P., Pech, B., Proust, J., Richard, J., & Benoit, J. (2000). Lipidic nanocapsules: preparation process and use as drug delivery systems. Patent No. WO02688000.Google Scholar
  25. 25.
    Heurtault, B., Saulnier, P., Pech, B., Proust, J., & Benoit, J. (2002). A novel phase inversion-based process for the preparation of lipid nanocarriers. Pharmaceutical Research, 19, 875–880.CrossRefPubMedGoogle Scholar
  26. 26.
    Balzeau, J., Pinier, M., Berges, R., Saulnier, P., Benoit, J., & Eyer, J. (2013). The effect of functionalizing lipid nanocapsules with NFL-TBS.40-63 peptide on their uptake by glioblastoma cells. Biomaterials, 34, 3381–3389.CrossRefPubMedGoogle Scholar
  27. 27.
    Carradori, D., Saulnier, P., Préat, V., des Rieux, A., & Eyer, J. (2016). NFL-lipid nanocapsules for brain neural stem cell targeting in vitro and in vivo. Journal of Controlled Release, 238, 253–262.CrossRefPubMedGoogle Scholar
  28. 28.
    Franco, P., Silvestroff, L., Soto, E., & Pasquini, J. (2008). Thyroid hormones promote differentiation of oligodendrocyte progenitor cells and improve remyelination after cuprizone-induced demyelination. Experimental Neurology, 212, 458–467.CrossRefPubMedGoogle Scholar
  29. 29.
    Anton, N., Saulnier, P., Gaillard, C., Porcher, E., Vrignaud, S., & Benoit, J. (2009). Aqueous-core lipid nanocapsules for encapsulating fragile hydrophilic and/or lipophilic molecules. Langmuir, 25, 11413–11419.CrossRefPubMedGoogle Scholar
  30. 30.
    Ruffini, F., Arbour, N., Blain, M., Olivier, A., & Antel, J. (2004). Distinctive properties of human adult brain-derived myelin progenitor cells. The American Journal of Pathology, 165, 2167–2175.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Tang, D., Tokumoto, Y., & Raff, M. (2000). Long-term culture of purified postnatal oligodendrocyte precursor cells. Evidence for an intrinsic maturation program that plays out over months. Journal of Cell Biology, 148, 971–984.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Bögler, O., Wren, D., Barnett, S., Land, H., & Noble, M. (1990). Cooperation between two growth factors promotes extended self-renewal and inhibits differentiation of oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 87, 6368–6372.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    McKinnon, R., Matsui, T., Aranda, M., & Dubois-Dalcq, M. (1991). A role for fibroblast growth factor in oligodendrocyte development. Annals of the New York Academy of Sciences, 638, 378–386.CrossRefPubMedGoogle Scholar
  34. 34.
    Wolswijk, G., & Noble, M. (1992). Cooperation between PDGF and FGF converts slowly dividing O-2Aadult progenitor cells to rapidly dividing cells with characteristics of O-2Aperinatal progenitor cells. The Journal of Cell Biology, 118, 889–900.CrossRefPubMedGoogle Scholar
  35. 35.
    Cui, Q., & Almazan, G. (2007). IGF-I-induced oligodendrocyte progenitor proliferation requires PI3K/Akt, MEK/ERK, and Src-like tyrosine kinases. Journal of Neurochemistry, 100, 1480–1493.PubMedGoogle Scholar
  36. 36.
    Supeno, N., Pati, S., Hadi, R., Ghani, A., Mustafa, Z., Abdullah, J., Idris, F., Han, X., & Jaafar, H. (2013). IGF-1 acts as controlling switch for long-term proliferation and maintenance of EGF/FGF-responsive striatal neural stem cells. International Journal of Medical Sciences, 10, 522–531.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Mason, J., & Goldman, J. (2002). A2B5+ and O4+ cycling progenitors in the adult forebrain white matter respond differentially to PDGF-AA, FGF-2, and IGF-1. Molecular and Cellular Neurosciences, 20, 30–42.CrossRefPubMedGoogle Scholar
  38. 38.
    McMorris, F., & Dubois-Dalcq, M. (1988). Insulin-like growth factor I promotes cell proliferation and oligodendroglial commitment in rat glial progenitor cells developing in vitro. The Journal of Neuroscience, 21, 199–209.Google Scholar
  39. 39.
    Arsenijevic, Y., Weiss, S., Schneider, B., & Aebischer, P. (2001). Insulin-like growth factor-I is necessary for neural stem cell proliferation and demonstrates distinct actions of epidermal growth factor and fibroblast growth factor-2. The Journal of Neuroscience, 21, 7194–7202.PubMedGoogle Scholar
  40. 40.
    Raff, M., Lillien, L., Richardson, W., Burne, J., & Noble, M. (1988). Platelet-derived growth factor from astrocytes drives the clock that times oligodendrocyte development in culture. Nature, 333, 562–565.CrossRefPubMedGoogle Scholar
  41. 41.
    Baron, W., Metz, B., Bansal, R., Hoekstra, D., & de Vries, H. (2000). PDGF and FGF-2 signaling in oligodendrocyte progenitor cells: regulation of proliferation and differentiation by multiple intracellular signaling pathways. Molecular and Cellular Neurosciences, 15, 314–329.CrossRefPubMedGoogle Scholar
  42. 42.
    Goretzki, L., Burg, M., Grako, K., & Stallcup, W. (1999). High-affinity binding of basic fibroblast growth factor and platelet-derived growth factor-AA to the core protein of the NG2 proteoglycan. The Journal of Biological Chemistry, 274, 16831–16837.CrossRefPubMedGoogle Scholar
  43. 43.
    Baumann, N., & Pham-Dinh, D. (2001). Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiological Reviews, 81, 871–927.PubMedGoogle Scholar
  44. 44.
    Liu, Y., Wu, Y., Lee, J., Xue, H., Pevny, L., Kaprielian, Z., & Rao, M. (2002). Oligodendrocyte and astrocyte development in rodents: an in situ and immunohistological analysis during embryonic development. Glia, 40, 25–43.CrossRefPubMedGoogle Scholar
  45. 45.
    Bansal, R., Kumar, M., Murray, K., Morrison, R., & Pfeiffer, S. (1996). Regulation of FGF receptors in the oligodendrocyte lineage. Molecular and Cellular Neurosciences, 7, 263–275.CrossRefPubMedGoogle Scholar
  46. 46.
    Murtie, J., Zhou, Y.-X., Le, T., & Armstrong, R. (2005). In vivo analysis of oligodendrocyte lineage development in postnatal FGF2 null mice. Glia, 49, 542–554.CrossRefPubMedGoogle Scholar
  47. 47.
    Redwine, J., Blinder, K., & Armstrong, R. (1997). In situ expression of fibroblast growth factor receptors by oligodendrocyte progenitors and oligodendrocytes in adult mouse central nervous system. Journal of Neuroscience Research, 50, 229–237.CrossRefPubMedGoogle Scholar
  48. 48.
    Takuma, K., Baba, A., & Matsuda, T. (2004). Astrocyte apoptosis: implications for neuroprotection. Progress in Neurobiology, 72, 111–127.CrossRefPubMedGoogle Scholar
  49. 49.
    Wilkins, A., Majed, H., Layfield, R., Compston, A., & Chandran, S. (2003). Oligodendrocytes promote neuronal survival and axonal length by distinct intracellular mechanisms: a novel role for oligodendrocyte-derived glial cell line-derived neurotrophic factor. The Journal of Neuroscience, 23, 4967–4974.PubMedGoogle Scholar
  50. 50.
    Boku, S., Nakagawa, S., Takamura, N., Kato, A., Takebayashi, M., Hisaoka-Nakashima, K., Omiya, Y., Inoue, T., & Kusumi, I. (2013). GDNF facilitates differentiation of the adult dentate gyrus-derived neural precursor cells into astrocytes via STAT3. Biochemical and Biophysical Research Communications, 343, 779–784.CrossRefGoogle Scholar
  51. 51.
    Strelau, J., & Unsicker, K. (1999). GDNF family members and their receptors: expression and functions in two oligodendroglial cell lines representing distinct stages of oligodendroglial development. Glia, 26, 291–301.CrossRefPubMedGoogle Scholar
  52. 52.
    Maisonpierre, P., Belluscio, L., Friedman, B., Alderson, R., Wiegand, S., Furth, M., Lindsay, R., & Yancopoulos, G. (1990). NT-3, BDNF, and NGF in the developing rat nervous system: parallel as well as reciprocal patterns of expression. Neuron, 5, 501–509.CrossRefPubMedGoogle Scholar
  53. 53.
    Müller, W. (1997). Developmental biology (1st ed.). New York: Springer-Verlag New York, Inc..CrossRefGoogle Scholar
  54. 54.
    Razavi, S., Nazem, G., Mardani, M., Esfandiari, E., Salehi, H., & Esfahani, S. (2015). Neurotrophic factors and their effects in the treatment of multiple sclerosis. Advanced Biomedical Research, 4, 53.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Fortin, D., Rom, E., Sun, H., Yayon, A., & Bansal, R. (2005). Distinct fibroblast growth factor (FGF)/FGF receptor signaling pairs initiate diverse cellular responses in the oligodendrocyte lineage. The Journal of Neuroscience, 25, 7470–7479.CrossRefPubMedGoogle Scholar
  56. 56.
    Armstrong, R., Le, T., Frost, E., Borke, R., & Vana, A. (2002). Absence of fibroblast growth factor 2 promotes oligodendroglial repopulation of demyelinated white matter. The Journal of Neuroscience, 22, 8574–8585.PubMedGoogle Scholar
  57. 57.
    Watzlawik, J., Warrington, A., & Rodriguez, M. (2013). PDGF is required for remyelination-promoting IgM stimulation of oligodendrocyte progenitor cell proliferation. PloS One, 8, e55149.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Rowe, D., Collier, L., Seifert, H., Chapman, C., Leonardo, C., Willing, A., & Pennypacker, K. (2014). Leukemia inhibitor factor promotes functional recovery and oligodendrocyte survival in rat models of focal ischemia. The European Journal of Neuroscience, 40, 3111–3119.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Barres, B., Lazar, M., & Raff, M. (1994). A novel role for thyroid hormone, glucocorticoids and retinoic acid in timing oligodendrocyte development. Development, 120, 1907–1108.Google Scholar
  60. 60.
    Gudas, L., & Wagner, J. (2011). Retinoids regulate stem cell differentiation. Journal of Cellular Physiology, 226, 322–330.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Almouazen, E., Bourgeois, S., Boussaïd, A., Valot, P., Malleval, C., Fessi, H., Nataf, S., & Briançon, S. (2012). Development of a nanoparticle-based system for the delivery of retinoic acid into macrophages. International Journal of Pharmaceutics, 430, 207–215.CrossRefPubMedGoogle Scholar
  62. 62.
    Lim, S., & Kim, C. (2002). Formulation parameters determining the physicochemical characteristics of solid lipid nanoparticles loaded with all-trans retinoic acid. International Journal of Pharmaceutics, 243, 135–146.CrossRefPubMedGoogle Scholar
  63. 63.
    Szuts, Z., & Harosi, F. (1991). Solubility of retinoids in water. Archives of Biochemistry and Biophysics, 287, 297–304.CrossRefPubMedGoogle Scholar
  64. 64.
    Ourique, A., Pohlmann, A., Guterres, S., & Beck, R. (2008). Tretinoin-loaded nanocapsules: preparation, physicochemical characterization, and photostability study. International Journal of Pharmaceutics, 352, 1–4.CrossRefPubMedGoogle Scholar
  65. 65.
    Huynh, N., Passirani, C., Saulnier, P., & Benoit, J. (2009). Lipid nanocapsules: a new platform for nanomedicine. International Journal of Pharmaceutics, 379, 201–209.CrossRefPubMedGoogle Scholar
  66. 66.
    Wilson, H., Onischke, C., & Raine, C. (2003). Human oligodendrocyte precursor cells in vitro: phenotypic analysis and differential response to growth factors. Glia, 44, 153–165.CrossRefPubMedGoogle Scholar
  67. 67.
    Czepiel, M., Boddeke, E., & Copay, S. (2015). HUman oligodendrocytes in remyelination research. Glia, 63, 513–530.CrossRefPubMedGoogle Scholar
  68. 68.
    Tabar, V., & Studer, L. (2014). Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nature Reviews. Genetics, 15, 82–92.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Fischer, S., Aguilar Perez, M., Bassiouni, H., Hopf, N., Bäzner, H., & Henkes, H. (2013). Arteriovenous fistula of the filum terminale: diagnosis, treatment, and literature review. Clinical Neuroradiology, 23, 309–314.CrossRefPubMedGoogle Scholar
  70. 70.
    Jha, R., Chrenek, R., Magnotti, L., & Cardozo, D. (2013). The isolation, differentiation, and survival in vivo of multipotent cells from the postnatal rat filum terminale. PloS One, 8, e65974.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Varghese, M., Olstrom, H., Berg-Johnsen, J., Moe, M., Murrell, W., & Langmoen, I. (2009). Isolation of human multipotent neural progenitors from adult filum terminale. Stem Cells and Development, 18, 603–613.CrossRefPubMedGoogle Scholar
  72. 72.
    Chvátal, A., Andĕrová, M., Ziak, D., Orkand, R., & Syková, E. (2001). Membrane currents and morphological properties of neurons and glial cells in the spinal cord and filum terminale of the frog. Neuroscience Research, 40, 23–35.CrossRefPubMedGoogle Scholar
  73. 73.
    Boros, C., Lukácsi, E., Horváth-Oszwald, E., & Réthelyi, M. (2008). Neurochemical architecture of the filum terminale in the rat. Brain Research, 1209, 105–114.CrossRefPubMedGoogle Scholar
  74. 74.
    Durdağ, E., Börcek, P., Öcal, Ö., Börcek, A., Emmez, H., & Baykaner, M. (2015). Pathological evaluation of the filum terminale tissue after surgical excision. Child's Nervous System, 31, 759–763.CrossRefPubMedGoogle Scholar
  75. 75.
    Arvidsson, L., Fagerlund, M., Jaff, N., Ossoinak, A., Jansson, K., Hägerstrand, A., Johansson, C., Brundin, L., & Svensson, M. (2011). Distribution and characterization of progenitor cells within the human filum terminale. PloS One, 6, e27393.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Jha, R., Liu, X., Chrenek, R., Madsen, J., & Cardozo, D. (2013). The postnatal human filum terminale is a source of autologous multipotent neurospheres capable of generating motor neurons. Neurosurgery, 72, 118–129.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Louvain Drug Research Institute, Advanced Drug Delivery and BiomaterialsUniversité catholique de LouvainBrusselsBelgium
  2. 2.Integrated Center for Cell Therapy and Regenerative Medicine, International Clinical Research Center (FNUSA-ICRC)St. Anne’s University Hospital BrnoBrnoCzech Republic
  3. 3.Institute of NeuroscienceUniversité catholique de LouvainBrusselsBelgium
  4. 4.Institute of Condensed Matter and NanosciencesUniversité catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations