Stem Cell Reviews and Reports

, Volume 13, Issue 4, pp 561–566 | Cite as

Very Small Embryonic-like Stem Cells Are Mobilized in Human Peripheral Blood during Hypoxemic COPD Exacerbations and Pulmonary Hypertension

  • Coralie L. Guerin
  • Adeline Blandinières
  • Benjamin Planquette
  • Jean-Sébastien Silvestre
  • Dominique Israel-Biet
  • Olivier Sanchez
  • David M. Smadja


Very small embryonic-like stem cells (VSELs) are major pluripotent stem cells involved in vascular and tissue regeneration and constitute a recruitable pool of stem/progenitor cells with putative instrumental role in organ repair. Here, we hypothesized that VSELs might be mobilized from the bone marrow (BM) to peripheral blood (PB) in patients with hypoxic lung disease or pulmonary hypertension (PH). The objective of the present study was then to investigate the changes in VSELs number in peripheral blood of patients with hypoxic lung disease and PH. We enrolled 26 patients with Chronic Obstructive Pulmonary Disease (COPD) with or without hypoxemia, 13 patients with PH and 20 controls without any respiratory or cardiovascular diseases. In PH patients, VSELs levels have been determined during right heart catheterization in pulmonary blood and PB. For this purpose, mononuclear cells were separated by density gradient and VSELs have been quantified by using a multiparametric flow cytometry approach. The number of PB-VSELs in hypoxic COPD patients was significantly increased compared with non-hypoxic COPD patients or controls (p = 0.0055). In patients with PH, we did not find any difference in VSELs numbers between arterial pulmonary blood and venous PB (p = 0.93). However, we found an increase in VSELs in the peripheral blood of patients with PH (p = 0.03). In conclusion, we unraveled that circulating VSELs were increased in peripheral blood of patients with hypoxic COPD or with PH. Thus, VSELs may serve as a reservoir of pluripotent stem cells that can be recruited into PB and may play an important role in promoting lung repair.


Very small embryonic-like stem cells VSEL Lung Hypoxia Pulmonary hypertension Progenitor cells 



This work was supported by grants from Leg Poix (chancellerie des universités), Région Ile de France-CORDDIM (Domaine d’intérêt majeur Cardiovasculaire Obésité Rein Diabète) and the Conny-Maeva Charitable Foundation. We also thank the technicians of hematology department of Georges Pompidou hospital, in particular Sebastien Bertil, Yann Burnel, Laurent Garcia and Florence Desvard.

Compliance with Ethical Standards

Conflict of Interest

Authors declare no conflict of interest.


  1. 1.
    Kucia, M., Reca, R., Campbell, F. R., Zuba-Surma, E., Majka, M., Ratajczak, J., et al. (2006). A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia, 20(5), 857–869.CrossRefPubMedGoogle Scholar
  2. 2.
    Shin, D. M., Liu, R., Klich, I., Wu, W., Ratajczak, J., Kucia, M., et al. (2010). Molecular signature of adult bone marrow-purified very small embryonic-like stem cells supports their developmental epiblast/germ line origin. Leukemia, 24(8), 1450–1461.CrossRefPubMedGoogle Scholar
  3. 3.
    Shin, D. M., Zuba-Surma, E. K., Wu, W., Ratajczak, J., Wysoczynski, M., Ratajczak, M. Z., et al. (2009). Novel epigenetic mechanisms that control pluripotency and quiescence of adult bone marrow-derived Oct4(+) very small embryonic-like stem cells. Leukemia, 23(11), 2042–2051.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Shaikh, A., Anand, S., Kapoor, S., Ganguly, R., Bhartiya, D. (2017). Mouse bone marrow VSELs exhibit differentiation into three embryonic germ lineages and germ & hematopoietic cells in culture. Stem Cell Review. doi: 10.1007/s12015-016-9714-0.
  5. 5.
    Guerin, C. L., Loyer, X., Vilar, J., Cras, A., Mirault, T., Gaussem, P., et al. (2015). Bone-marrow-derived very small embryonic-like stem cells in patients with critical leg ischaemia: Evidence of vasculogenic potential. Thrombosis and Haemostasis, 113(5), 1084–1094.CrossRefPubMedGoogle Scholar
  6. 6.
    Kassmer, S. H., Jin, H., Zhang, P. X., Bruscia, E. M., Heydari, K., Lee, J. H., et al. (2013). Very small embryonic-like stem cells from the murine bone marrow differentiate into epithelial cells of the lung. Stem Cells, 31(12), 2759–2766.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Zbucka-Kretowska, M., Eljaszewicz, A., Lipinska, D., Grubczak, K., Rusak, M., Mrugacz, G., et al. (2016). Effective mobilization of very small embryonic-like stem cells and hematopoietic stem/progenitor cells but not endothelial progenitor cells by follicle-stimulating hormone therapy. Stem Cells International, 2016, 8530207.CrossRefPubMedGoogle Scholar
  8. 8.
    Starzynska, T., Dabkowski, K., Blogowski, W., Zuba-Surma, E., Budkowska, M., Salata, D., et al. (2013). An intensified systemic trafficking of bone marrow-derived stem/progenitor cells in patients with pancreatic cancer. Journal of Cellular and Molecular Medicine, 17(6), 792–799.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Gharib, S. A., Dayyat, E. A., Khalyfa, A., Kim, J., Clair, H. B., Kucia, M., et al. (2010). Intermittent hypoxia mobilizes bone marrow-derived very small embryonic-like stem cells and activates developmental transcriptional programs in mice. Sleep, 33(11), 1439–1446.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Galie, N., Humbert, M., Vachiery, J. L., Gibbs, S., Lang, I., Torbicki, A., et al. (2015). 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: The joint task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). The European Respiratory Journal, 46(4), 903–975.CrossRefPubMedGoogle Scholar
  11. 11.
    Palange, P., Testa, U., Huertas, A., Calabro, L., Antonucci, R., Petrucci, E., et al. (2006). Circulating haemopoietic and endothelial progenitor cells are decreased in COPD. The European Respiratory Journal, 27(3), 529–541.CrossRefPubMedGoogle Scholar
  12. 12.
    Sala, E., Villena, C., Balaguer, C., Rios, A., Fernandez-Palomeque, C., Cosio, B. G., et al. (2010). Abnormal levels of circulating endothelial progenitor cells during exacerbations of COPD. Lung, 188(4), 331–338.CrossRefPubMedGoogle Scholar
  13. 13.
    Huertas, A., Testa, U., Riccioni, R., Petrucci, E., Riti, V., Savi, D., et al. (2010). Bone marrow-derived progenitors are greatly reduced in patients with severe COPD and low-BMI. Respiratory Physiology & Neurobiology, 170(1), 23–31.CrossRefGoogle Scholar
  14. 14.
    Semenza, G. L. (2003). Targeting HIF-1 for cancer therapy. Nature Reviews. Cancer, 3(10), 721–732.CrossRefPubMedGoogle Scholar
  15. 15.
    Ong, L. L., Li, W., Oldigs, J. K., Kaminski, A., Gerstmayer, B., Piechaczek, C., et al. (2010). Hypoxic/normoxic preconditioning increases endothelial differentiation potential of human bone marrow CD133+ cells. Tissue Engineering. Part C, Methods, 16(5), 1069–1081.CrossRefPubMedGoogle Scholar
  16. 16.
    Soeda, A., Park, M., Lee, D., Mintz, A., Androutsellis-Theotokis, A., McKay, R. D., et al. (2009). Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1alpha. Oncogene, 28(45), 3949–3959.CrossRefPubMedGoogle Scholar
  17. 17.
    Fadini, G. P., Schiavon, M., Cantini, M., Baesso, I., Facco, M., Miorin, M., et al. (2006). Circulating progenitor cells are reduced in patients with severe lung disease. Stem Cells, 24(7), 1806–1813.CrossRefPubMedGoogle Scholar
  18. 18.
    Smadja, D. M., Duong-van-Huyen, J. P., Dal Cortivo, L., Blanchard, A., Bruneval, P., Emmerich, J., et al. (2012). Early endothelial progenitor cells in bone marrow are a biomarker of cell therapy success in patients with critical limb ischemia. Cytotherapy, 14(2), 232–239.CrossRefPubMedGoogle Scholar
  19. 19.
    Wecht, S., & Rojas, M. (2016). Mesenchymal stem cells in the treatment of chronic lung disease. Respirology, 21(8), 1366–1375.CrossRefPubMedGoogle Scholar
  20. 20.
    McIntyre, L. A., Moher, D., Fergusson, D. A., Sullivan, K. J., Mei, S. H., Lalu, M., et al. (2016). Efficacy of mesenchymal stromal cell therapy for acute lung injury in preclinical animal models: A systematic review. PloS One, 11(1), e0147170.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Havens, A. M., Sun, H., Shiozawa, Y., Jung, Y., Wang, J., Mishra, A., et al. (2014). Human and murine very small embryonic-like cells represent multipotent tissue progenitors, in vitro and in vivo. Stem Cells and Development, 23(7), 689–701.CrossRefPubMedGoogle Scholar
  22. 22.
    Havens, A. M., Shiozawa, Y., Jung, Y., Sun, H., Wang, J., McGee, S., et al. (2013). Human very small embryonic-like cells generate skeletal structures, in vivo. Stem Cells and Development, 22(4), 622–630.CrossRefPubMedGoogle Scholar
  23. 23.
    Cahill, E. F., Kennelly, H., Carty, F., Mahon, B. P., & English, K. (2016). Hepatocyte growth factor is required for mesenchymal stromal cell protection against Bleomycin-induced pulmonary fibrosis. Stem Cells Translational Medicine, 5(10), 1307–1318.CrossRefPubMedGoogle Scholar
  24. 24.
    Kennelly, H., Mahon, B. P., & English, K. (2016). Human mesenchymal stromal cells exert HGF dependent cytoprotective effects in a human relevant pre-clinical model of COPD. Scientific Reports, 6, 38207.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Smadja, D. M. (2017). Bone marrow very small embryonic-like stem cells: New generation of autologous cell therapy soon ready for prime time? Stem Cell Review. doi: 10.1007/s12015-017-9718-4.
  26. 26.
    Kim, C. F., Jackson, E. L., Woolfenden, A. E., Lawrence, S., Babar, I., Vogel, S., et al. (2005). Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell, 121(6), 823–835.CrossRefPubMedGoogle Scholar
  27. 27.
    Montani, D., Perros, F., Gambaryan, N., Girerd, B., Dorfmuller, P., Price, L. C., et al. (2011). C-kit-positive cells accumulate in remodeled vessels of idiopathic pulmonary arterial hypertension. American Journal of Respiratory and Critical Care Medicine, 184(1), 116–123.CrossRefPubMedGoogle Scholar
  28. 28.
    Davie, N. J., Crossno Jr., J. T., Frid, M. G., Hofmeister, S. E., Reeves, J. T., Hyde, D. M., et al. (2004). Hypoxia-induced pulmonary artery adventitial remodeling and neovascularization: Contribution of progenitor cells. American Journal of Physiology. Lung Cellular and Molecular Physiology, 286(4), L668–L678.CrossRefPubMedGoogle Scholar
  29. 29.
    Yeager, M. E., Frid, M. G., & Stenmark, K. R. (2011). Progenitor cells in pulmonary vascular remodeling. Pulm Circ., 1(1), 3–16.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Smadja, D. M., Gaussem, P., Mauge, L., Israel-Biet, D., Dignat-George, F., Peyrard, S., et al. (2009). Circulating endothelial cells: A new candidate biomarker of irreversible pulmonary hypertension secondary to congenital heart disease. Circulation, 119(3), 374–381.CrossRefPubMedGoogle Scholar
  31. 31.
    Smadja, D. M., Mauge, L., Sanchez, O., Silvestre, J. S., Guerin, C., Godier, A., et al. (2010). Distinct patterns of circulating endothelial cells in pulmonary hypertension. The European Respiratory Journal, 36(6), 1284–1293.CrossRefPubMedGoogle Scholar
  32. 32.
    Granton, J., Langleben, D., Kutryk, M. B., Camack, N., Galipeau, J., Courtman, D. W., et al. (2015). Endothelial NO-synthase Gene-enhanced progenitor cell therapy for pulmonary arterial hypertension: The PHACeT trial. Circulation Research, 117(7), 645–654.CrossRefPubMedGoogle Scholar
  33. 33.
    Wang, X. X., Zhang, F. R., Shang, Y. P., Zhu, J. H., Xie, X. D., Tao, Q. M., et al. (2007). Transplantation of autologous endothelial progenitor cells may be beneficial in patients with idiopathic pulmonary arterial hypertension: A pilot randomized controlled trial. Journal of the American College of Cardiology, 49(14), 1566–1571.CrossRefPubMedGoogle Scholar
  34. 34.
    Zhu, J. H., Wang, X. X., Zhang, F. R., Shang, Y. P., Tao, Q. M., Zhu, J. H., et al. (2008). Safety and efficacy of autologous endothelial progenitor cells transplantation in children with idiopathic pulmonary arterial hypertension: Open-label pilot study. Pediatric Transplantation, 12(6), 650–655.CrossRefPubMedGoogle Scholar
  35. 35.
    O'Connell, C., O'Callaghan, D. S., & Humbert, M. (2013). Novel medical therapies for pulmonary arterial hypertension. Clinics in Chest Medicine, 34(4), 867–880.CrossRefPubMedGoogle Scholar
  36. 36.
    Fadini, G. P., Avogaro, A., Ferraccioli, G., & Agostini, C. (2010). Endothelial progenitors in pulmonary hypertension: New pathophysiology and therapeutic implications. The European Respiratory Journal, 35(2), 418–425.CrossRefPubMedGoogle Scholar
  37. 37.
    Stabler, C. T., Lecht, S., Lazarovici, P., & Lelkes, P. I. (2015). Mesenchymal stem cells for therapeutic applications in pulmonary medicine. British Medical Bulletin, 115(1), 45–56.CrossRefPubMedGoogle Scholar
  38. 38.
    Ikonomou, L., Freishtat, R. J., Wagner, D. E., Panoskaltsis-Mortari, A., & Weiss, D. J. (2016). The global emergence of unregulated stem cell treatments for respiratory diseases. Professional societies need to act. Annals of the American Thoracic Society, 13(8), 1205–1207.CrossRefPubMedGoogle Scholar
  39. 39.
    Kassmer, S. H., & Krause, D. S. (2013). Very small embryonic-like cells: Biology and function of these potential endogenous pluripotent stem cells in adult tissues. Molecular Reproduction and Development, 80(8), 677–690.CrossRefPubMedGoogle Scholar
  40. 40.
    Kucia, M., Zuba-Surma, E. K., Wysoczynski, M., Wu, W., Ratajczak, J., Machalinski, B., et al. (2007). Adult marrow-derived very small embryonic-like stem cells and tissue engineering. Expert Opinion on Biological Therapy, 7(10), 1499–1514.CrossRefPubMedGoogle Scholar
  41. 41.
    Taichman, R. S., Wang, Z., Shiozawa, Y., Jung, Y., Song, J., Balduino, A., et al. (2010). Prospective identification and skeletal localization of cells capable of multilineage differentiation in vivo. Stem Cells and Development, 19(10), 1557–1570.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Zuba-Surma, E. K., Guo, Y., Taher, H., Sanganalmath, S. K., Hunt, G., Vincent, R. J., et al. (2011). Transplantation of expanded bone marrow-derived very small embryonic-like stem cells (VSEL-SCs) improves left ventricular function and remodelling after myocardial infarction. Journal of Cellular and Molecular Medicine, 15(6), 1319–1328.CrossRefPubMedGoogle Scholar
  43. 43.
    Kassmer, S. H., Bruscia, E. M., Zhang, P. X., & Krause, D. S. (2012). Nonhematopoietic cells are the primary source of bone marrow-derived lung epithelial cells. Stem Cells, 30(3), 491–499.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Asosingh, K., Farha, S., Lichtin, A., Graham, B., George, D., Aldred, M., et al. (2012). Pulmonary vascular disease in mice xenografted with human BM progenitors from patients with pulmonary arterial hypertension. Blood, 120(6), 1218–1227.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Zuba-Surma, E. K., Wu, W., Ratajczak, J., Kucia, M., & Ratajczak, M. Z. (2009). Very small embryonic-like stem cells in adult tissues-potential implications for aging. Mechanisms of Ageing and Development, 130(1–2), 58–66.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Coralie L. Guerin
    • 1
  • Adeline Blandinières
    • 2
    • 3
    • 4
  • Benjamin Planquette
    • 2
    • 3
    • 5
  • Jean-Sébastien Silvestre
    • 3
    • 6
  • Dominique Israel-Biet
    • 2
    • 3
    • 5
  • Olivier Sanchez
    • 2
    • 3
    • 5
  • David M. Smadja
    • 2
    • 3
    • 4
    • 7
  1. 1.National Cytometry Platform, Department of Infection and ImmunityLuxembourg Institute of HealthStrassenLuxembourg
  2. 2.Inserm UMR-S1140ParisFrance
  3. 3.Université Paris Descartes, Sorbonne Paris CitéParisFrance
  4. 4.Hematology DepartmentAP-HP, European Georges Pompidou HospitalParisFrance
  5. 5.Respiratory Medicine DepartmentAP-HP, European Georges Pompidou HospitalParisFrance
  6. 6.Inserm UMRS-970, Paris Centre de Recherche CardiovasculaireParisFrance
  7. 7.Hematology DepartmentEuropean Hospital Georges PompidouParisFrance

Personalised recommendations