Stem Cell Reviews and Reports

, Volume 13, Issue 4, pp 552–560 | Cite as

Human very Small Embryonic-like Cells Support Vascular Maturation and Therapeutic Revascularization Induced by Endothelial Progenitor Cells

  • Coralie L. Guerin
  • Elisa Rossi
  • Bruno Saubamea
  • Audrey Cras
  • Virginie Mignon
  • Jean-sébastien Silvestre
  • David M. Smadja
Article

Abstract

Very small embryonic-like stem cells (VSELs) are major pluripotent stem cells defined as cells of small size being Lineage- negative, CD133-positive, and CD45-negative. We previously described that human bone marrow VSELs were able to differentiate into endothelial cells and promoted post-ischemic revascularization in mice with surgically induced critical limb ischemia. In the present work, we isolated bone marrow VSELs from patients with critical limb ischemia and studied their ability to support endothelial progenitor cells therapeutic capacity and revascularization potential. Sorted bone marrow VSELs cultured in angiogenic media were co-injected with endothelial progenitor cells and have been show to trigger post-ischemic revascularization in immunodeficient mice, and support vessel formation in vivo in Matrigel implants better than human bone marrow mesenchymal stem cells. In conclusion, VSELs are a potential new source of therapeutic cells that may give rise to cells of the endothelial and perivascular lineage in humans. VSELs are the first real vasculogenic stem cells able to differentiate in endothelial and perivascular lineage in human adult described from now. Thus, because VSELs presence have been proposed in adult tissues, we think that VSELs are CD45 negative stem cells able to give rise to vascular regeneration in human tissues and vessels.

Keywords

Very small embryonic like cells VSEL Endothelial progenitor cells ECFC Vasculogenesis Perivascular cells 

Notes

Acknowledgements

This work was supported by grants from Région Ile de France-CORDDIM (Domaine d’intérêt majeur Cardiovasculaire Obésité Rein Diabète) and the Conny-Maeva Charitable Foundation. Elisa Rossi’salary is supported by a grant from Conny-Maeva Charitable Foundation.

Compliance with Ethical Standards

Conflict of Interest

Authors declare no conflict of interest related to this work.

References

  1. 1.
    Powell, R. J. (2012). Update on clinical trials evaluating the effect of biologic therapy in patients with critical limb ischemia. Journal of Vascular Surgery, 56, 264–266.CrossRefPubMedGoogle Scholar
  2. 2.
    Tateishi-Yuyama, E., Matsubara, H., Murohara, T., et al. (2002). Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: A pilot study and a randomised controlled trial. Lancet, 360, 427–435.CrossRefPubMedGoogle Scholar
  3. 3.
    Duong-Van-Huyen, J. P., Smadja, D. M., Bruneval, P., et al. (2008). Bone marrow-derived mononuclear cell therapy induces distal angiogenesis after local injection in critical leg ischemia. Modern Pathology, 21, 837–846.CrossRefPubMedGoogle Scholar
  4. 4.
    Smadja, D. M., Bieche, I., Silvestre, J. S., et al. (2008). Bone morphogenetic proteins 2 and 4 are selectively expressed by late outgrowth endothelial progenitor cells and promote neoangiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 2137–2143.CrossRefPubMedGoogle Scholar
  5. 5.
    Pignon, B., Sevestre, M. A., Chatelain, D., et al. (2007). Histological changes after implantation of autologous bone marrow mononuclear cells for chronic critical limb ischemia. Bone Marrow Transplantation, 39, 647–648.CrossRefPubMedGoogle Scholar
  6. 6.
    Kucia, M., Reca, R., Campbell, F. R., et al. (2006). A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia, 20, 857–869.CrossRefPubMedGoogle Scholar
  7. 7.
    Havens, A. M., Sun, H., Shiozawa, Y., et al. (2014). Human and murine very small embryonic-like cells represent multipotent tissue progenitors, in vitro and in vivo. Stem Cells and Development, 23, 689–701.CrossRefPubMedGoogle Scholar
  8. 8.
    Kassmer, S. H., Jin, H., Zhang, P. X., et al. (2013). Very small embryonic-like stem cells from the murine bone marrow differentiate into epithelial cells of the lung. Stem Cells, 31, 2759–2766.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kassmer, S. H., & Krause, D. S. (2013). Very small embryonic-like cells: Biology and function of these potential endogenous pluripotent stem cells in adult tissues. Molecular Reproduction and Development, 80, 677–690.CrossRefPubMedGoogle Scholar
  10. 10.
    Guerin, C. L., Loyer, X., Vilar, J., et al. (2015). Bone-marrow-derived very small embryonic-like stem cells in patients with critical leg ischaemia: Evidence of vasculogenic potential. Thrombosis and Haemostasis, 113, 1084–1094.CrossRefPubMedGoogle Scholar
  11. 11.
    Smadja, D. M., d'Audigier, C., Guerin, C. L., et al. (2012). Angiogenic potential of BM MSCs derived from patients with critical leg ischemia. Bone Marrow Transplantation, 47, 997–1000.CrossRefPubMedGoogle Scholar
  12. 12.
    Smadja, D. M., Duong-van-Huyen, J. P., Dal Cortivo, L., et al. (2012). Early endothelial progenitor cells in bone marrow are a biomarker of cell therapy success in patients with critical limb ischemia. Cytotherapy, 14, 232–239.CrossRefPubMedGoogle Scholar
  13. 13.
    Melero-Martin, J. M., De Obaldia, M. E., Kang, S. Y., et al. (2008). Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circulation Research, 103, 194–202.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Foubert, P., Matrone, G., Souttou, B., et al. (2008). Coadministration of endothelial and smooth muscle progenitor cells enhances the efficiency of proangiogenic cell-based therapy. Circulation Research, 103, 751–760.CrossRefPubMedGoogle Scholar
  15. 15.
    Jeon, E. S., Moon, H. J., Lee, M. J., et al. (2006). Sphingosylphosphorylcholine induces differentiation of human mesenchymal stem cells into smooth-muscle-like cells through a TGF-beta-dependent mechanism. Journal of Cell Science, 119, 4994–5005.CrossRefPubMedGoogle Scholar
  16. 16.
    Yamashita, J., Itoh, H., Hirashima, M., et al. (2000). Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature, 408, 92–96.CrossRefPubMedGoogle Scholar
  17. 17.
    Sone, M., Itoh, H., Yamahara, K., et al. (2007). Pathway for differentiation of human embryonic stem cells to vascular cell components and their potential for vascular regeneration. Arteriosclerosis, Thrombosis, and Vascular Biology, 27, 2127–2134.CrossRefPubMedGoogle Scholar
  18. 18.
    Khan, Z. A., Boscolo, E., Picard, A., et al. (2008). Multipotential stem cells recapitulate human infantile hemangioma in immunodeficient mice. The Journal of Clinical Investigation, 118, 2592–2599.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Boscolo, E., Stewart, C. L., Greenberger, S., et al. (2011). JAGGED1 signaling regulates hemangioma stem cell-to-pericyte/vascular smooth muscle cell differentiation. Arteriosclerosis, Thrombosis, and Vascular Biology, 31, 2181–2192.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Smadja, D. M., Guerin, C. L., Boscolo, E., et al. (2014). Alpha6-Integrin is required for the adhesion and vasculogenic potential of hemangioma stem cells. Stem Cells, 32, 684–693.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Dawn, B., Tiwari, S., Kucia, M. J., et al. (2008). Transplantation of bone marrow-derived very small embryonic-like stem cells attenuates left ventricular dysfunction and remodeling after myocardial infarction. Stem Cells, 26, 1646–1655.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wojakowski, W., Tendera, M., Kucia, M., et al. (2010). Cardiomyocyte differentiation of bone marrow-derived Oct-4+CXCR4+SSEA-1+ very small embryonic-like stem cells. International Journal of Oncology, 37, 237–247.PubMedGoogle Scholar
  23. 23.
    Kucia, M., Zuba-Surma, E. K., Wysoczynski, M., et al. (2007). Adult marrow-derived very small embryonic-like stem cells and tissue engineering. Expert Opinion on Biological Therapy, 7, 1499–1514.CrossRefPubMedGoogle Scholar
  24. 24.
    Tapia, N., & Scholer, H. R. (2016). Molecular obstacles to clinical translation of iPSCs. Cell Stem Cell, 19, 298–309.CrossRefPubMedGoogle Scholar
  25. 25.
    Yoshihara, M., Hayashizaki, Y., Murakawa, Y. (2017). Genomic instability of iPSCs: Challenges towards their clinical applications. Stem Cell Review. doi: 10.1007/s12015-016-9680-6.
  26. 26.
    Ingram, D. A., Mead, L. E., Moore, D. B., et al. (2005). Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood, 105, 2783–2786.CrossRefPubMedGoogle Scholar
  27. 27.
    Yoder, M. C. (2010). Is endothelium the origin of endothelial progenitor cells? Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 1094–1103.CrossRefPubMedGoogle Scholar
  28. 28.
    Yoder, M. C., Mead, L. E., Prater, D., et al. (2007). Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood, 109, 1801–1809.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Case, J., Mead, L. E., Bessler, W. K., et al. (2007). Human CD34+AC133+VEGFR-2+ cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Experimental Hematology, 35, 1109–1118.CrossRefPubMedGoogle Scholar
  30. 30.
    Timmermans, F., Van Hauwermeiren, F., De Smedt, M., et al. (2007). Endothelial outgrowth cells are not derived from CD133+ cells or CD45+ hematopoietic precursors. Arteriosclerosis, Thrombosis, and Vascular Biology, 27, 1572–1579.CrossRefPubMedGoogle Scholar
  31. 31.
    Smadja, D. M., Dorfmuller, P., Guerin, C. L., et al. (2014). Cooperation between human fibrocytes and endothelial colony-forming cells increases angiogenesis via the CXCR4 pathway. Thrombosis and Haemostasis, 112, 1002–1013.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Smadja, D. M., Levy, M., Huang, L., et al. (2015). Treprostinil indirectly regulates endothelial colony forming cell angiogenic properties by increasing VEGF-A produced by mesenchymal stem cells. Thrombosis and Haemostasis, 114(4), 735–747.Google Scholar
  33. 33.
    Kang, K. T., Allen, P., Bischoff, J. (2011). Bioengineered human vascular networks transplanted into secondary mice reconnect with the host vasculature and re-establish perfusion. Blood, 118(25), 6718–6721.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Coralie L. Guerin
    • 1
  • Elisa Rossi
    • 2
    • 3
  • Bruno Saubamea
    • 4
  • Audrey Cras
    • 2
    • 3
    • 5
  • Virginie Mignon
    • 4
  • Jean-sébastien Silvestre
    • 2
    • 6
  • David M. Smadja
    • 2
    • 3
    • 7
  1. 1.National Cytometry Platform, Department of Infection and ImmunityLuxembourg Institute of HealthStrassenLuxembourg
  2. 2.Université Paris Descartes, Sorbonne Paris CitéParisFrance
  3. 3.Inserm UMR-S1140ParisFrance
  4. 4.Cellular and Molecular Imaging Facility, Inserm US 25, CNRS UMS 3612, Faculty of Pharmacy of ParisParis Descartes UniversityParisFrance
  5. 5.Cell Therapy DepartmentAP-HP, Saint Louis HospitalParisFrance
  6. 6.Inserm UMRS-970, Paris Centre de Recherche CardiovasculaireParisFrance
  7. 7.Hematology DepartmentAP-HP, European Georges Pompidou HospitalParisFrance

Personalised recommendations