Advertisement

Stem Cell Reviews and Reports

, Volume 13, Issue 4, pp 491–498 | Cite as

Characterization of Tunneling Nanotubes in Wharton’s jelly Mesenchymal Stem Cells. An Intercellular Exchange of Components between Neighboring Cells

  • Viviana Sanchez
  • Nerina Villalba
  • Luciano Fiore
  • Carlos Luzzani
  • Santiago Miriuka
  • Alberto Boveris
  • Ricardo J. Gelpi
  • Alicia Brusco
  • Juan José Poderoso
Article

Abstract

Intercellular communication is one of the most important events in cell population behavior. In the last decade, tunneling nanotubes (TNTs) have been recognized as a new form of long distance intercellular connection. TNT function is to allow molecular and subcellular structure exchange between neighboring cells via the transfer of molecules and organelles such as calcium ions, prions, viral and bacterial pathogens, small lysosomes and mitochondria. New findings support the concept that mesenchymal stem cells (MSCs) can affect cell microenvironment by the release of soluble factors or the transfer of cellular components to neighboring cells, in a way which significantly contributes to cell regulation and tissue repair, although the underlying mechanisms remain poorly understood. MSCs have many advantages for their implementation in regenerative medicine. The TNTs in these cell types are heterogeneous in both structure and function, probably due to their highly dynamic behavior. In this work we report an extensive and detailed description of types, structure, components, dynamics and functionality of the TNTs bridging neighboring human umbilical cord MSCs obtained from Wharton”s jelly. Characterization studies were carried out through phase contrast, fluorescence, electron microscopy and time lapse images with the aim of describing cells suitable for an eventual regenerative medicine.

Keywords

Tunneling nanotubes Mesenchymal stem cells Mitochondrial transfer Intercellular communication Intercellular bridges 

Notes

Acknowledgements

We thank Lic. Lidia M. Lopez for her expert technical assistance with electron microscopy studies; Dr. Ines Rebagliata for her technical support in cell cultures and Dr. Cecilia Poderoso for kindly providing the pSUPER-retro plasmid.

Grant Support

UBACYT 20020130100258BA (to A. Brusco) and PICT 2010–2430 (to J.J. Poderoso).

Compliance with Ethical Standards

Disclosures

The authors indicate no potential conflicts of interest.

Supplementary material

12015_2017_9730_MOESM1_ESM.pdf (3.9 mb)
ESM 1 (PDF 4025 kb)
12015_2017_9730_MOESM2_ESM.mp4 (7.7 mb)
ESM 2 (MP4 7872 kb)
12015_2017_9730_MOESM3_ESM.mp4 (3 mb)
ESM 3 (MP4 3069 kb)
12015_2017_9730_MOESM4_ESM.mp4 (5.1 mb)
ESM 4 (MP4 5250 kb)
12015_2017_9730_MOESM5_ESM.doc (21 kb)
ESM 5 (DOC 21 kb)

References

  1. 1.
    Rustom, A., Saffrich, R., Markovic, I., Walther, P., & Gerdes, H. H. (2004). Nanotubular highways for intercellular organelle transport. Science, 303, 1007–1010.CrossRefPubMedGoogle Scholar
  2. 2.
    Watkins, S. C., & Salter, R. D. (2005). Functional connectivity between immune cells mediated by tunneling nanotubes. Immunity, 23, 309–318.CrossRefPubMedGoogle Scholar
  3. 3.
    Koyanagi, M., Brandes, R. P., Haendeler, J., Zeiher, A. M., & Dimmeler, S. (2005). Cell-to-cell connection of endothelial progenitor cells with cardiac myocytes by nanotubes: a novel mechanism for cell fate changes? Circulation Research, 96, 1039–1041.CrossRefPubMedGoogle Scholar
  4. 4.
    Önfelt, B., Nedvetzki, S., Benninger, R. K., Purbhoo, M. A., Sowinski, S., Hume, A. N., Seabra, M. C., Neil, M. A., French, P. M., & Davis, D. M. (2006). Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria. Journal of Immunology, 177, 8476–8483.CrossRefGoogle Scholar
  5. 5.
    Plotnikov, E. Y., Khryapenkov, T. G., Galkina, S., Sukhikhb, G., & Zorova, D. (2010). Cytoplasm and organelletransfer between mesenchymal multipotent stromal cells and renal tubular cells in co-culture. Experimental Cell Research, 316, 2447–2455.CrossRefPubMedGoogle Scholar
  6. 6.
    Gerdes, H. H., & Carvalho, R. (2008). Intercellular transfer mediated by tunneling nanotubes. Current Opinion in Cell Biology, 20, 470–475.CrossRefPubMedGoogle Scholar
  7. 7.
    Sisakhtnezhad, S., & Khosravi, L. (2015). Emerging physiological and pathological implications of tunneling nanotubes formation between cells. European Journal of Cell Biology, 94, 429–443.CrossRefPubMedGoogle Scholar
  8. 8.
    Gerdes, H., Bukoreshtliev, N., & Barroso, J. (2007). Tunneling nanotubes: a new route for the exchange of components between animal cells. FEBS Letters, 581, 2194–2201.CrossRefPubMedGoogle Scholar
  9. 9.
    Yasuda, K., Khandare, A., Burianovsky, L., Maruyama, S., Zhang, F., Nasjletti, A., & Goligorsky, M. (2011). Tunneling nanotubes mediate rescue of prematurely senescent endothelial cells by endothelial progenitors: exchange of lysosomal pool. Aging, 3, 597–608.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Carvalho, M., Teixeira, F., Reis, R., Sousa, N., & Salgado, A. (2011). Mesenchymal stem cells in the umbilical cord: phenotypic characterization, secretome and applications in central nervous system regenerative medicine. Current Stem Cell Research & Therapy, 6, 221–228.CrossRefGoogle Scholar
  11. 11.
    Batsali, A. K., Kastrinaki, M. C., Papadaki, H. A., & Pontikoglou, C. (2013). Mesenchymal stem cells derived from Wharton's jelly of the umbilical cord: biological properties and emerging clinical applications. Current Stem Cell Research & Therapy, 8, 144–155.CrossRefGoogle Scholar
  12. 12.
    Luzzani, C., Neiman, G., Garate, X., Questa, M., Solari, C., Fernandez-Espinosa, D., García, M., Errecalde, A., Guberman, A., Scassa, M. E., Sevlever, G. E., Romorini, L., & Miriuka, S. G. (2015). A therapy-grade protocol for differentiation of pluripotent stem cells into mesenchymal stem cells using platelet lysate as supplement. Stem Cell Research & Therapy, 6, 6 .http://stemcellres.com/content/6/1/6 CrossRefGoogle Scholar
  13. 13.
    Noble, C., Nilsson, A., Freitag, C., Beech, J., Tegenfeldt, J., & Ambjörnsson, T. (2015). A fast and scalable kymograph alignment algorithm for nanochannel-based optical DNA mappings. PloS One. doi: 10.1371/journal.pone.0121905.Google Scholar
  14. 14.
    Thayanithy, V., Dickson, E. L., Steer, C., Subramanian, S., & Lou, E. (2014). Tumor-stromal cross talk: direct cell-to-cell transfer of oncogenic microRNAs via tunneling nanotubes. Translational Research, 164, 359–365.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Han, H., Hu, J., Yan, Q., Zhu, J., Zhu, Z., Chen, Y., Sun, J., & Zhang, R. (2016). Bone marrow derived mesenchymal stem cells rescue injured H9c2 cells via transferring intact mitochondria through tunneling nanotubes in an in vitro simulated ischemia/reperfusion model. Molecular Medicine Reports, 13, 1517–1524.PubMedGoogle Scholar
  16. 16.
    Jackson, M., Morrison, T., Doherty, D., Mc Auley, D., Matthay, M., Kissenpfennig, A., O’Kane, C., & Krasnodembskaya, A. (2016). Mitochondrial transfer via tunneling nanotubes is an important mechanism by which mesenchymal stem cells enhance macrophage phagocytosis in the in vitro and in vivo models of ARDS. Stem Cells, 34, 2210–2223.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Wang, H., Hung, S., Peng, S., Huang, C., Wei, H.-M., Guo, Y.-J., et al. (2004). Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem Cells, 22, 1330–1337.CrossRefPubMedGoogle Scholar
  18. 18.
    Zani, B., & Edelman, E. (2010). Cellular bridges. Routes for intercellular communication and cell migration. Communicative & Integrative Biology, 3, 215–220.CrossRefGoogle Scholar
  19. 19.
    Veranic, P., Lokar, M., Schütz, G., Weghuber, J., Wieser, S., Hägerstrand, H., et al. (2008). Different types of cell-to-cell connections mediated by nanotubular structures. Biophysical Journal, 95, 4416–4425.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    He, K., Shi, X., Zhang, X., Dang, S., Ma, X., Liu, F., et al. (2011). Long-distance intercellular connectivity between cardiomyocytes and cardiofibroblasts mediated by membrane nanotubes. Cardiovascular Research, 92, 39–47.CrossRefPubMedGoogle Scholar
  21. 21.
    Plotnikov, E., Khryapenkova, T., Vasileva, A., Marey, M., Galkina, S., Isaev, N., et al. (2008). Cell-to-cell cross-talk between mesenchymal stem cells and cardiomyocytes in co-culture. Journal of Cellular and Molecular Medicine, 12, 1622–1631.CrossRefPubMedGoogle Scholar
  22. 22.
    Watson, N., Divers, R., Kedar, R., Mehindru, A., Mehindru, A., Borlongan, M. C., & Borlongan, C. V. (2015). Discarded Wharton’s jelly of the human umbilical cord: a viable source for mesenchymal stem cells. Cytotherapy, 17, 18–24.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Viviana Sanchez
    • 1
  • Nerina Villalba
    • 2
  • Luciano Fiore
    • 1
  • Carlos Luzzani
    • 3
  • Santiago Miriuka
    • 3
    • 4
  • Alberto Boveris
    • 5
  • Ricardo J. Gelpi
    • 6
  • Alicia Brusco
    • 1
  • Juan José Poderoso
    • 2
  1. 1.IBCN (UBA-CONICET), Facultad de MedicinaUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.INIGEM (UBA-CONICET), Hospital de ClínicasUniversidad de Buenos AiresBuenos AiresArgentina
  3. 3.LIAN (FLENI-CONICET)Belen de EscobarArgentina
  4. 4.Cátedra de Citología, Histología y Embriología, Facultad de Ciencias MédicasUniversidad Nacional de La PlataLa PlataArgentina
  5. 5.Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
  6. 6.IBIMOL (UBA-CONICET), Facultad de MedicinaUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations