Integrated Platform for Production and Purification of Human Pluripotent Stem Cell-Derived Neural Precursors


Human pluripotent stem cells (hPSCs) are a promising source of cells for clinical applications, such as transplantation of clinically engineered tissues and organs, and drug discovery programs due to their ability to self-renew and to be differentiated into cells from the three embryonic germ layers. In this study, the differentiation of two hPSC-lines into neural precursors (NPs) was accomplished with more than 80 % efficiency, by means of the dual-SMAD inhibition protocol, based on the use of two small molecules (SB431542 and LDN193189) to generate Pax6 and Nestin-positive neural entities. One of the major hurdles related to the in vitro generation of PSC-derived populations is the tumorigenic potential of cells that remain undifferentiated. These remaining hPSCs have the potential to generate teratomas after being transplanted, and may interfere with the outcome of in vitro differentiation protocols. One strategy to tackle this problem is to deplete these “contaminating” cells during the differentiation process. Magnetic activated cell sorting (MACS) was used for the first time for purification of hPSC-derived NPs after the neural commitment stage using anti-Tra-1-60 micro beads for negative selection of the unwanted hPSCs. The depletion had an average efficiency of 80.4 ± 5 % and less than 1.5 % of Tra-1-60 positive cells were present in the purified populations. After re-plating, the purified neural precursors maintained their phenotype, and the success of the preparative purification with MACS was further confirmed with a decrease of 94.3 % in the number of Oct4-positive proliferating hPSC colonies. Thus, the integration of the MACS depletion step with the neural commitment protocol paves the way towards the establishment of a novel bioprocess for production of purified populations of hPSC-derived neural cells for different applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Yamanaka, S. (2009). A fresh look at iPS cells. Cell, 137, 13–17.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Nishimura, K., & Takahashi, J. (2013). Therapeutic application of stem cell technology toward the treatment of Parkinson’s disease. Biological and Pharmaceutical Bulletin, 36, 171–175.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Jang, J., Yoo, J. E., Lee, J. A., Lee, D. R., Kim, J. Y., Huh, Y. J., et al. (2012). Disease-specific induced pluripotent stem cells: a platform for human disease modeling and drug discovery. Experimental & Molecular Medicine, 44, 202–213.

    Article  CAS  Google Scholar 

  4. 4.

    Koch, P., Kokaia, Z., Lindvall, O., & Brustle, O. (2009). Emerging concepts in neural stem cell research: autologous repair and cell-based disease modelling. Lancet Neurology, 8, 819–829.

    PubMed  Article  Google Scholar 

  5. 5.

    Zeevi-Levin, N., Itskovitz-Eldor, J., & Binah, O. (2012). Cardiomyocytes derived from human pluripotent stem cells for drug screening. Pharmacology and Therapeutics, 134, 180–188.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Scott, C. W., Peters, M. F., & Dragan, Y. P. (2013). Human induced pluripotent stem cells and their use in drug discovery for toxicity testing. Toxicology Letters, 219, 49–58.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Huangfu, D., Osafune, K., Maehr, R., Guo, W., Eijkelenboom, A., Chen, S., et al. (2008). Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nature Biotechnology, 26, 1269–1275.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Kriks, S., Shim, J. W., Piao, J., Ganat, Y. M., Wakeman, D. R., Xie, Z., et al. (2011). Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature, 480, 547–551.

    PubMed Central  PubMed  CAS  Google Scholar 

  10. 10.

    Yang, L., Soonpaa, M. H., Adler, E. D., Roepke, T. K., Kattman, S. J., Kennedy, M., et al. (2008). Human cardiovascular progenitor cells develop from a KDR + embryonic-stem-cell-derived population. Nature, 453, 524–528.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Kroon, E., Martinson, L. A., Kadoya, K., Bang, A. G., Kelly, O. G., Eliazer, S., et al. (2008). Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nature Biotechnology, 26, 443–452.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Fong, C. Y., Peh, G. S., Gauthaman, K., & Bongso, A. (2009). Separation of SSEA-4 and TRA-1-60 labelled undifferentiated human embryonic stem cells from a heterogeneous cell population using magnetic-activated cell sorting (MACS) and fluorescence-activated cell sorting (FACS). Stem Cell Reviews, 5, 72–80.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Schriebl, K., Satianegara, G., Hwang, A., Tan, H. L., Fong, W. J., Yang, H. H., et al. (2012). Selective removal of undifferentiated human embryonic stem cells using magnetic activated cell sorting followed by a cytotoxic antibody. Tissue Engineering. Part A, 18, 899–909.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Kim, H. O., Huh, Y. J., Jang, J., Choi, Y., Kim, D.-W., & Kim, H.-S. (2011). Selective depletion of SSEA-3-and TRA-1-60-positive undifferentiated human embryonic stem cells by magnetic activated cell sorter (MACS). Tissue Engineering and Regenerative Medicine, 8, 253–261.

    Google Scholar 

  15. 15.

    Chambers, S. M., Fasano, C. A., Papapetrou, E. P., Tomishima, M., Sadelain, M., & Studer, L. (2009). Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nature Biotechnology, 27, 275–280.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  16. 16.

    Shi, Y., Kirwan, P., & Livesey, F. J. (2012). Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nature Protocols, 7, 1836–1846.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Marti, M., Mulero, L., Pardo, C., Morera, C., Carrio, M., Laricchia-Robbio, L., et al. (2013). Characterization of pluripotent stem cells. Nature Protocols, 8, 223–253.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Badcock, G., Pigott, C., Goepel, J., & Andrews, P. W. (1999). The human embryonal carcinoma marker antigen TRA-1-60 is a sialylated keratan sulfate proteoglycan. Cancer Research, 59, 4715–4719.

    PubMed  CAS  Google Scholar 

  19. 19.

    Ludwig, T. E., Levenstein, M. E., Jones, J. M., Berggren, W. T., Mitchen, E. R., Frane, J. L., et al. (2006). Derivation of human embryonic stem cells in defined conditions. Nature Biotechnology, 24, 185–187.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Koch, P., Opitz, T., Steinbeck, J. A., Ladewig, J., & Brustle, O. (2009). A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration. Proceedings of the National Academy of Sciences of the United States of America, 106, 3225–3230.

    PubMed Central  PubMed  Article  Google Scholar 

  21. 21.

    Falk, A., Koch, P., Kesavan, J., Takashima, Y., Ladewig, J., Alexander, M., et al. (2012). Capture of neuroepithelial-like stem cells from pluripotent stem cells provides a versatile system for in vitro production of human neurons. PLoS One, 7, e29597.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  22. 22.

    Watanabe, K., Ueno, M., Kamiya, D., Nishiyama, A., Matsumura, M., Wataya, T., et al. (2007). A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nature Biotechnology, 25, 681–686.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Xu, C., Inokuma, M. S., Denham, J., Golds, K., Kundu, P., Gold, J. D., et al. (2001). Feeder-free growth of undifferentiated human embryonic stem cells. Nature Biotechnology, 19, 971–974.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Nagaoka, M., Si-Tayeb, K., Akaike, T., & Duncan, S. A. (2010). Culture of human pluripotent stem cells using completely defined conditions on a recombinant E-cadherin substratum. BMC Developmental Biology, 10, 60.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  25. 25.

    Plaia, T. W., Josephson, R., Liu, Y., Zeng, X., Ording, C., Toumadje, A., et al. (2006). Characterization of a new NIH-registered variant human embryonic stem cell line, BG01V: a tool for human embryonic stem cell research. Stem Cells, 24, 531–546.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Noisa, P., Ramasamy, T. S., Lamont, F. R., Yu, J. S., Sheldon, M. J., Russell, A., et al. (2012). Identification and characterisation of the early differentiating cells in neural differentiation of human embryonic stem cells. PLoS One, 7, e37129.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  27. 27.

    Pruszak, J., Sonntag, K. C., Aung, M. H., Sanchez-Pernaute, R., & Isacson, O. (2007). Markers and methods for cell sorting of human embryonic stem cell-derived neural cell populations. Stem Cells, 25, 2257–2268.

    PubMed Central  PubMed  Article  Google Scholar 

  28. 28.

    Abujarour, R., Valamehr, B., Robinson, M., Rezner, B., Vranceanu, F., & Flynn, P. (2013). Optimized surface markers for the prospective isolation of high-quality hiPSCs using flow cytometry selection. Scientific Reports, 3, 1179.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  29. 29.

    Gonzalez, R., Garitaonandia, I., Abramihina, T., Wambua, G. K., Ostrowska, A., Brock, M., et al. (2013). Deriving dopaminergic neurons for clinical use. A practical approach. Scientific Reports, 3, 1463.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  30. 30.

    Schriebl, K., Lim, S., Choo, A., Tscheliessnig, A., & Jungbauer, A. (2010). Stem cell separation: a bottleneck in stem cell therapy. Biotechnology Journal, 5, 50–61.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Diogo, M. M., da Silva, C. L., & Cabral, J. M. S. (2012). Separation technologies for stem cell bioprocessing. Biotechnology and Bioengineering, 109, 2699–2709.

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Yanai, A., Laver, C. R., Joe, A. W., Viringipurampeer, I. A., Wang, X., & Gregory-Evans, C. Y. et al. (2013). Differentiation of human embryonic stem cells using size-controlled embryoid bodies and negative cell selection in the production of photoreceptor precursor cells. Tissue Engineering Part C: Methods: Ahead of Print. doi:10.1089/ten.tec.2012.0524.

  33. 33.

    Tang, C., Lee, A. S., Volkmer, J. P., Sahoo, D., Nag, D., Mosley, A. R., et al. (2011). An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells. Nature Biotechnology, 29, 829–834.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  34. 34.

    Fernandes, T. G., Rodrigues, C. A. V., Diogo, M. M., & Cabral, J. M. S. (2013). Stem cell bioprocessing for regenerative medicine. Journal of Chemical Technology and Biotechnology: (Ahead of print, doi:10.1002/jctb.4189).

  35. 35.

    Barral, S., Ecklebe, J., Tomiuk, S., Tiveron, M. C., Desoeuvre, A., Eckardt, D., et al. (2013). Efficient neuronal in vitro and in vivo differentiation after immunomagnetic purification of mESC derived neuronal precursors. Stem Cell Research, 10, 133–146.

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Terstegge, S., Winter, F., Rath, B. H., Laufenberg, I., Schwarz, C., Leinhaas, A., et al. (2010). Laser-assisted photoablation of human pluripotent stem cells from differentiating cultures. Stem Cell Reviews, 6, 260–269.

    PubMed  Article  Google Scholar 

  37. 37.

    Ben-David, U., Gan, Q. F., Golan-Lev, T., Arora, P., Yanuka, O., Oren, Y. S., et al. (2013). Selective elimination of human pluripotent stem cells by an oleate synthesis inhibitor discovered in a high-throughput screen. Cell Stem Cell, 12, 167–179.

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Singh, A., Suri, S., Lee, T., Chilton, J. M., Cooke, M. T., Chen, W., et al. (2013). Adhesion strength-based, label-free isolation of human pluripotent stem cells. Nature Methods, 10, 438–444.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  39. 39.

    Cyranoski, D. (2013). Stem cells cruise to clinic. Nature, 494, 413.

    PubMed  Article  CAS  Google Scholar 

Download references


G.M.C. Rodrigues, T.G. Fernandes and C.A.V. Rodrigues acknowledge support from Fundação para a Ciência e a Tecnologia, Portugal (SFRH/BD/89374/2012, SFRH/BPD/86316/2012 and SFRH/BPD/82056/2011, respectively). This work was financially supported by Fundação para a Ciência e a Tecnologia (grants PTDC/EQU-ERQ/105277/2008 and PTDC/EBB-BIO/122504/2010), and the European Union’s Seventh Framework Program (NeuroStemcell project, grant 222943). LT-NES® is a registered trademark of LIFE&BRAIN GmbH.

Author information



Corresponding author

Correspondence to Maria Margarida Diogo.

Additional information

Gonçalo M. C. Rodrigues and Andreia F.S. Matos have contributed equally

All co-authors of the manuscript have agreed to the submission of the manuscript. Oliver Brüstle is co-founder of and has stock in LIFE & BRAIN GmbH. All other authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Video showing the first 24 h of the neural commitment of hiPSCs. (M4V 8324 kb)

Supplementary Figure S1

Immunocytochemistry of hESC-derived cells after the neural commitment protocol for Sox2 (A), Pax6 (B) and Nestin (C). Nuclei were stained with DAPI. Scale bars: in (A) and (C) - 50 μm; (B) - 100 μm. (JPEG 5062 kb)

Supplementary Figure S2

FC analysis of hiPSC-derived cells for the early neuroectoderm marker Pax6. The results represent the mean of the percentage of positively stained cells analyzed by FC, calculated from n-replicates. The darker area in the FC graphs represents the isotype control and the lighter grey area represents the positively stained cells. (JPEG 139 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rodrigues, G.M.C., Matos, A.F.S., Fernandes, T.G. et al. Integrated Platform for Production and Purification of Human Pluripotent Stem Cell-Derived Neural Precursors. Stem Cell Rev and Rep 10, 151–161 (2014).

Download citation


  • Human pluripotent stem cells
  • Neural commitment
  • Magnetic activated cell sorting (MACS)
  • Neural precursors
  • Cell purification