‘Polymorphism-aided’ Selective Targeting and Inhibition of Caspase-6 by a Novel Allosteric Inhibitor Towards Efficient Alzheimer’s Disease Treatment


The predominance of Alzheimer’s disease (AD) among the aged remains a global challenge. As such, the search for alternative and effective therapeutic options continuous unabated. Among the therapeutic targets explored over the years toward impeding the progression of AD is caspase-6 (Casp6), although selectively targeting Casp6 remains a challenge due to high homology with other members of the caspase family. Methyl 3-[(2,3-dihydro-1-benzofuran-2-yl formamido) methyl]-5-(furan-2-amido) benzoate (C13), a novel allosteric inhibitor, is reportedly shown to exhibit selective inhibition against mutant human Casp6 variants (E35K). However, structural and atomistic insights accounting for the reported inhibitory prowess of C13 remains unresolved. In this study, we seek to unravel the mechanistic selectivity of C13 coupled with the complementary effects of E35K single-nucleotide polymorphism (SNP) relative to Casp6 inhibition. Analyses of binding dynamics revealed that the variant Lysine-35 mediated consistent high-affinity interactions with C13 at the allosteric site, possibly forming the molecular basis of the selectivity of C13 as well as its high binding free energy as estimated. Analysis of residue interaction network around Glu35 and Lys35 revealed prominent residue network distortions in the mutant Casp6 conformation evidenced by a decrease in node degree, reduced number of edges and an increase short in path length relative to a more compact conformation in the wild system. The relatively higher binding free energy of C13 coupled with the stronger intermolecular interactions elicited in the mutant conformation further suggests that the mutation E35K probably favours the inhibitory activity of C13. Further analysis of atomistic changes showed increased C-α atom deviations consistent with structural disorientations in the mutant Casp6. Structural Insights provided could open up a novel paradigm of structure-based design of selective allosteric inhibition of Casp6 towards the treatment of neurodegenerative diseases.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Deepak, K. (2018). Identification of FDA-approved drugs as novel allosteric inhibitors of human executioner caspases. Proteins, 86(11), 1202–1210.

    Article  Google Scholar 

  2. 2.

    Behzadi, P. (2015). Caspases and apoptosis. iMedPub Journal, 1(2), 6.

    Google Scholar 

  3. 3.

    MacKenzie, S. H., Schipper, J. L., & Clark, A. C. (2010). The potential for caspases in drug discovery. Current Opinion in Drug Discovery and Development, 13(5), 568–576.

    CAS  PubMed  Google Scholar 

  4. 4.

    Howley, B., & Fearnhead, H. O. (2008). Caspases as therapeutic targets. Journal of Cellular and Molecular Medicine, 12(5A), 1502–1516.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Garrido, E. R., Heidt, L., Beaubier, N., & Troy, C. M. (2011). Neurochemical mechanisms in disease. Advances in Neurobiology 1, Springer New York, chapter 2, 17–47.

  6. 6.

    Martinon, F., & Tschopp, J. (2004). Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell, 117(5), 561–574.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Fang, H., Chen, C., Hung, M., Hsiao, Y., & Chiang, T. (2011). Caspase-14 is an anti-apoptotic protein targeting apoptosis-inducing factor in lung adenocarcinomas. Oncology Reports, 26(2), 359–369.

    CAS  PubMed  Google Scholar 

  8. 8.

    McIlwain, D. R., Berger, T., & Mak, T. W. (2013). Caspase functions in cell death and disease. Cold Spring Harbor Perspectives in Biology, 5(4), a008656.

  9. 9.

    Baumgartner, R., et al. (2009). The crystal structure of caspase-6, a selective effector of axonal degeneration. Biochemical Journal, 423(3), 429–439.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Guo, H., Albrecht, S., Bourdeau, M., Petzke, T., Bergeron, C., & LeBlanc, A. C. (2004). Active caspase-6 and caspase-6-cleaved tau in neuropil threads, neuritic plaques, and neurofibrillary tangles of Alzheimer’s disease. The American Journal of Pathology, 165(2), 523–531.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Leblanc, A. C. (2011). Caspase-6 activation in familial Alzheimer disease brains carrying amyloid precursor protein, presenilin I or presenilin II mutations. Journal of Neuropathology and Experimental Neurology, 68(12), 1282–1293.

    Google Scholar 

  12. 12.

    Tubeleviciute-Aydin, A., et al. (2019). Identification of allosteric inhibitors against active caspase-6. Scientific Reports, 9(1), 1–19.

    CAS  Article  Google Scholar 

  13. 13.

    Yang, J., et al. (2018). Mechanism of gasdermin D recognition by inflammatory caspases and their inhibition by a gasdermin D-derived peptide inhibitor. Proceedings of the National Academic Sciences of the USA, 115(26), 6792–6797.

    CAS  Article  Google Scholar 

  14. 14.

    Pettersen, E. F., et al. (2004). UCSF chimera—a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    ChemAxon. (2015). MarvinSketch user’s guide. https://chemaxon.com/products/marvin.

  16. 16.

    Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4, 7.

    Article  Google Scholar 

  17. 17.

    Trott, O., & Olson, A. (2010). NIH public access. Journal of Computational Chemistry, 31(2), 455–461.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Ncube, N. B., Ramharack, P., & Soliman, M. E. S. (2018). An ‘All-In-One’ pharmacophoric architecture for the discovery of potential broad-spectrum anti-flavivirus drugs. Applied Biochemistry and Biotechnology, 185(3), 799–814.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Munsamy, G., Agoni, C., & Soliman, M. E. S. (2018). A dual target of Plasmepsin IX and X: unveiling the atomistic superiority of a core chemical scaffold in malaria therapy. Journal of Cellular Biochemistry, 120(5), 7876–7887.

    Article  Google Scholar 

  20. 20.

    Agoni, C., Ramharack, P., & Soliman, M. E. S. (2018). Synergistic interplay of the co-administration of rifampin and newly developed anti-TB drug: could it be a promising new line of TB therapy? Combinatorial Chemistry and High Throughput Screening, 21(6), 453–460.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Olotu, F. A., Agoni, C., Adeniji, E., Abdullahi, M., & Soliman, M. E. (2018). Probing gallate-mediated selectivity and high-affinity binding of epigallocatechin gallate: a way-forward in the design of selective inhibitors for anti-apoptotic Bcl-2 proteins. Applied Biochemistry and Biotechnology, 187(3), 1061–1080.

    PubMed  Article  Google Scholar 

  22. 22.

    Agoni, C., Ramharack, P., & Soliman, M. (2018). Co-inhibition as a strategic therapeutic approach to overcome rifampin resistance in tuberculosis therapy: atomistic insights. Future Medicinal Chemistry, 10(4), 1665–1675.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Agoni, C., Ramharack, P., & Soliman, M. E. S. (2018). Allosteric inhibition induces an open WPD-loop: a new avenue towards glioblastoma therapy. RSC Advances, 8(70), 40187–40197.

    CAS  Article  Google Scholar 

  24. 24.

    Ramharack, P., & Soliman, M. E. S. (2016). Zika virus drug targets: a missing link in drug design and discovery—a route map to fill the gap. RSC Advances, 6(73), 68719–68731.

    CAS  Article  Google Scholar 

  25. 25.

    Salomon-ferrer, R., Case, D. A., & Walker, R. C. (2012). An overview of the Amber biomolecular simulation package. WIRES Computational Molecular Science, 3(2), 198–210.

    Article  Google Scholar 

  26. 26.

    Case, D. A., Babin, V., Berryman, J., Cai, R. M., Betz, Q., Cerutti, D. S., Cheatham III, T. E., Darden, T. A., Duke, R. E., & Gohlke, H., AMBER (2018).

  27. 27.

    Maier, J. A., Simmerling, C., Wickstrom, L., Hauser, K. E., Martinez, C., & Kasavajhala, K. (2015). ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Case, D. A., et al. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Péronnet, F., et al. (2012). Pharmacokinetic analysis of absorption, distribution and disappearance of ingested water labeled with D2O in humans. European Journal of Applied Physiology, 112(6), 2213–2222.

    PubMed  Article  Google Scholar 

  30. 30.

    Seifert, E. (2014). OriginPro 9.1: scientific data analysis and graphing software—software review. Journal of Chemical Information and Modeling, 54, 1552.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Pitera, J. W. (2014). Expected distributions of root-mean-square positional deviations in proteins. The Journal of Physical Chemistry B, 118(24), 6526–6530.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Maiorov, V. N., & Crippen, G. M. (1994). Significance of root-mean-square deviation in comparing three-dimensional structures of globular proteins. Journal of Molecular Biology, 235(2), 625–634.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Doncheva, N. T., Klein, K., Domingues, F. S., & Albrecht, M. (2011). Analyzing and visualizing residue networks of protein structures. Trends in Biochemical Sciences, 36(4), 179–182.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Xue, W., Jin, X., Ning, L., Wang, M., Liu, H., & Yao, X. (2012). Exploring the molecular mechanism of cross‐resistance to HIV‐1 integrase strand transfer inhibitors by molecular dynamics simulation and residue interaction network analysis. Journal of Chemical Information and Modeling, 53, 210–222.

    PubMed  Article  Google Scholar 

  35. 35.

    Roe, D. R., & Cheatham, III, T. E. (2013). PTRAJ and CPPTRAJ: software for processing and analysis of molecular synamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10, 449–461.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Mhlongo, N. N., & Soliman, M. E. S. (2015). Single H5N1 influenza A neuraminidase mutation develops resistance to oseltamivir due to distorted conformational and drug binding landscape: multiple molecular dynamics analyses. RSC Advances, 5(14), 10849–10861.

    CAS  Article  Google Scholar 

  39. 39.

    Ndagi, U., Mhlongo, N. N., & Soliman, M. E. (2017). The impact of Thr91 mutation on c-Src resistance to UM-164: molecular dynamics study revealed a new opportunity for drug design. Molecular BioSystems, 13(6), 1157–1171.

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Oguntade, S., Ramharack, P., & Soliman, M. E. (2017). Characterizing the ligand-binding landscape of Zika NS3 helicase-promising lead compounds as potential inhibitors. Future Virology, 12(6), 261–273.

    CAS  Article  Google Scholar 

  41. 41.

    Moonsamy, S., Bhakat, S., Walker, R. C., & Soliman, M. E. S. (2016). Single active site mutation causes serious resistance of HIV reverse transcriptase to lamivudine: insight from multiple molecular dynamics simulations. Cell Biochemistry and Biophysics, 74(1), 35–48.

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Kumalo, H. M., & Soliman, M. E. (2016). Per-residue energy footprints-based pharmacophore modeling as an enhanced in silico approach in drug discovery: a case study on the identification of novel β-Secretase1 (BACE1) inhibitors as anti-Alzheimer agents. Cellular and Molecular Bioengineering, 9(1), 175–189.

    CAS  Article  Google Scholar 

Download references


The authors acknowledge the School of Health Science, University of KwaZulu-Natal, Westville campus for financial assistance, and The Centre of High Performance Computing (CHPC, www.chpc.ac.za), Cape Town, RSA, for computational resources.

Author information



Corresponding author

Correspondence to Mahmoud E. S. Soliman.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumi, R.O., Agoni, C., Issahaku, A.R. et al. ‘Polymorphism-aided’ Selective Targeting and Inhibition of Caspase-6 by a Novel Allosteric Inhibitor Towards Efficient Alzheimer’s Disease Treatment. Cell Biochem Biophys (2020). https://doi.org/10.1007/s12013-020-00927-0

Download citation


  • Caspase-6
  • Single-nucleotide polymorphism
  • Putative allosteric site
  • C13
  • Alzheimer’s disease
  • Selective targeting