Effects and Mechanisms of Autophagy Induced by Solubilized-Cholesterol in Hepatocytes: A Comparative Study Among Solvents


Cholesterol, the principal sterol in mammalian cells, has been reported to play a role in the pathogenesis of several diseases through autophagy. Due to its insoluble characteristic, all in vitro cholesterol experiments are performed using dimethyl sulphoxide, methyl-β-cyclodextrin, and ethanol co-solvents. To investigate whether the types of solvents have different effects on cholesterol-induced cell behaviors, we analyzed the effects and mechanisms of autophagy induced by solubilized-cholesterol in hepatic cells. We found that both solubilized-cholesterol and involved solvents could induce autophagy. Solubilized-cholesterol could further enhance the LC3-II expression with or without the pre-treatment with lysosomal blockers compared with the single-solvent groups, indicating that cholesterol could sensitize cells to solvents-induced autophagy. Besides, solubilized-cholesterol and single-solvent treatment could repress the activation of AKT-mTOR pathway. Furthermore, cholesterol solubilized in methyl-β-cyclodextrin could induce apoptosis while other solubilized-cholesterol or single solvent groups could not, suggesting that different dissolve methods may affect the cytotoxic of cholesterol. These results strongly suggest that the effect of solvent should be taken into consideration in further in vitro cholesterol studies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Yorimitsu, T., & Klionsky, D. J. (2005). Autophagy: molecular machinery for self-eating. Cell Death & Differentiation, 12, 1542–52.

    CAS  Article  Google Scholar 

  2. 2.

    Mizushima, N., & Levine, B. (2010). Autophagy in mammalian development and differentiation. Nature Cell Biology, 12, 823–30. https://doi.org/10.1038/ncb0910-823.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Young, A. R., Chan, E. Y., & Hu, X. W. et al. (2006). Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. Journal of Cell Science, 119(Pt 18), 3888–900. https://doi.org/10.1242/jcs.03172.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Mizushima, N., Kuma, A., Kobayashi, Y., Yamamoto, A., Matsubae, M., Takao, T., Natsume, T., Ohsumi, Y., & Yoshimori, T. (2003). Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. Journal of Cell Science, 116, 1679–88.

    CAS  Article  Google Scholar 

  5. 5.

    Klionsky, D. J., Abdelmohsen, K., & Abe, A. (2016). Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 12(1):1–222.

  6. 6.

    Lu, X., Liu, J., & Hou, F. et al. (2011). Cholesterol induces pancreatic beta cell apoptosis through oxidative stress pathway. Cell Stress and Chaperones, 16, 539–48.

    CAS  Article  Google Scholar 

  7. 7.

    Maiuri, M. C., Zalckvar, E., Kimchi, A., & Kroemer, G. (2007). Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nature Reviews Molecular Cell Biology, 8, 741–52.

    CAS  Article  Google Scholar 

  8. 8.

    Ikonen, E. (2008). Cellular cholesterol trafficking and compartmentalization. Nature Reviews Molecular Cell Biology, 9, 125–38.

    CAS  Article  Google Scholar 

  9. 9.

    Balse, E., Steele, D. F., & Abriel, H. et al. (2012). Dynamic of ion channel expression at the plasma membrane of cardiomyocytes. Physiological Reviews, 92, 1317–58.

    CAS  Article  Google Scholar 

  10. 10.

    Liao, X., Sluimer, J. C., & Wang, Y. et al. (2012). Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metabolism, 15, 545–53.

    CAS  Article  Google Scholar 

  11. 11.

    Xu, K., Yang, Y., & Yan, M. et al. (2010). Autophagy plays a protective role in free cholesterol overload-induced death of smooth muscle cells. Journal of Lipid Research, 51, 2581–90.

    CAS  Article  Google Scholar 

  12. 12.

    Liu, R., Li, J., & Zhang, T. et al. (2014). Itraconazole suppresses the growth of glioblastoma through induction of autophagy: involvement of abnormal cholesterol trafficking. Autophagy, 10, 1241–55.

    Article  Google Scholar 

  13. 13.

    Abe K., & Saito H. (1999). Cholesterol does not affect the toxicity of amyloid beta fragment but mimics its effect on MTT formazan exocytosis in cultured rat hippocampal neurons. Neurosci Res,35(3), 165–74.

  14. 14.

    Mundal, L., Sarancic, M., & Ose, L. et al. (2014). Mortality among patients with familial hypercholesterolemia: a registry-based study in Norway, 1992-2010. Journal of the American Heart Association, 3, e001236.

    Article  Google Scholar 

  15. 15.

    Huang, Y. N., Lin, C. I., & Liao, H. et al. (2016). Cholesterol overload induces apoptosis in SH-SY5Y human neuroblastoma cells through the up regulation of flotillin-2 in the lipid raft and the activation of BDNF/Trkb signaling. Neuroscience, 328, 201–9.

    CAS  Article  Google Scholar 

  16. 16.

    Ifere, G. O., Barr, E., & Equan, A. et al. (2009). Differential effects of cholesterol and phytosterols on cell proliferation, apoptosis and expression of a prostate specific gene in prostate cancer cell lines. Cancer Detection and Prevention, 32, 319–28.

    Article  Google Scholar 

  17. 17.

    Shen, S., Kepp, O., & Michaud, M. et al. (2011). Association and dissociation of autophagy, apoptosis and necrosis by systematic chemical study. Oncogene, 30, 4544–56.

    CAS  Article  Google Scholar 

  18. 18.

    Czaja, M. J., Ding, W. X., & Donohue, T. J. et al. (2013). Functions of autophagy in normal and diseased liver. Autophagy, 9, 1131–58.

    CAS  Article  Google Scholar 

  19. 19.

    Walenbergh, S. M., & Shiri-Sverdlov, R. (2015). Cholesterol is a significant risk factor for non-alcoholic steatohepatitis. Expert Review of Gastroenterology & Hepatology, 9, 1343–6.

    Article  Google Scholar 

  20. 20.

    Xue-shan, Z. et al. (2016). Imbalanced cholesterol metabolism in Alzheimer's disease. Clinica Chimica Acta, 456, 107–14.

    Article  Google Scholar 

  21. 21.

    Yin, J., Chaufour, X., & McLachlan, C. et al. (2000). Apoptosis of vascular smooth muscle cells induced by cholesterol and its oxides in vitro and in vivo. Atherosclerosis, 148, 365–74.

    CAS  Article  Google Scholar 

  22. 22.

    Lizard, G., Deckert, V., & Dubrez, L. et al. (1996). Induction of apoptosis in endothelial cells treated with cholesterol oxides. The American Journal of Pathology, 148(5), 1625–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Ueno, T., & Komatsu, M. (2017). Autophagy in the liver: functions in health and disease. Nature Reviews Gastroenterology & Hepatology,14, 170–84.

  24. 24.

    Christian, A. E., Haynes, M. P., Phillips, M. C., & Rothblat, G. H. (1997). Use of cyclodextrins for manipulating cellular cholesterol content. Journal of Lipid Research, 38, 2264–72.

  25. 25.

    Bodovitz, S., & Klein, W. L. (1996). Cholesterol modulates alpha-secretase cleavage of amyloid precursor protein. Journal of Biological Chemistry, 271, 4436–40.

    CAS  Article  Google Scholar 

  26. 26.

    Klein, U., Gimpl, G., & Fahrenholz, F. (1995). Alteration of the myometrial plasma membrane cholesterol content with beta-cyclodextrin modulates the binding affinity of the oxytocin receptor. Biochemistry, 34(42), 13784–93.

    CAS  Article  Google Scholar 

  27. 27.

    Onodera, R., Motoyama, K., & Okamatsu, A. et al. (2013). Involvement of cholesterol depletion from lipid rafts in apoptosis induced by methyl-β-cyclodextrin. Int J Pharm, 452(1–2), 116–23.

    CAS  Article  Google Scholar 

  28. 28.

    Yamaguchi, R., Perkins, G., & Hirota, K. (2015). Targeting cholesterol with β-cyclodextrin sensitizes cancer cells for apoptosis. FEBS Lett, 589(24 Pt B), 4097–105.

    CAS  Article  Google Scholar 

  29. 29.

    Park, E. K., Park, M. J., & Lee, S. H. et al. (2009). Cholesterol depletion induces anoikis-like apoptosis via FAK down-regulation and caveolae internalization. The Journal of Pathology, 218, 337–49.

    CAS  Article  Google Scholar 

  30. 30.

    Kim, J., Kundu, M., Viollet, B., & Guan, K. L. (2011). AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature Cell Biology, 13(2), 132–41.

    CAS  Article  Google Scholar 

  31. 31.

    Li, Y. C., Park, M. J., & Ye, S. K. et al. (2006). Elevated levels of cholesterol-rich lipid rafts in cancer cells are correlated with apoptosis sensitivity induced by cholesterol-depleting agents. The American Journal of Pathology, 168(4), 1107–18.

    CAS  Article  Google Scholar 

  32. 32.

    Manning, B. D., & Cantley, L. C. (2007). AKT/PKB signaling: navigating downstream. Cell, 129(7), 1261–74.

    CAS  Article  Google Scholar 

  33. 33.

    Wang, R. C., Wei, Y., & An, Z. et al. (2012). Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science, 338(6109), 956–9.

    CAS  Article  Google Scholar 

  34. 34.

    Heras-Sandoval, D., Pérez-Rojas, J. M., Hernández-Damián, J., & Pedraza-Chaverr, J. (2014). The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cellular Signalling, 26, 2694–701.

    CAS  Article  Google Scholar 

  35. 35.

    Zhang, J., Zhang, J. X., & Zhang, Q. L. (2016). PI3K/AKT/mTOR-mediated autophagy in the development of autism spectrum disorder. Brain Res Bull, 125, 152–8.

    Article  Google Scholar 

  36. 36.

    Dai, S., Dulcey, A. E., & Hu, X. et al. (2017). Methyl-beta-cyclodextrin restores impaired autophagy flux in Niemann-Pick C1-deficient cells through activation of AMPK. Autophagy, 13(8), 1435–51.

    CAS  Article  Google Scholar 

  37. 37.

    Orrenius, S., Kaminskyy, V. O., & Zhivotovsky, B. (2013). Autophagy in toxicology: cause or consequence? The Annual Review of Pharmacology and Toxicology, 53, 275–97.

    CAS  Article  Google Scholar 

  38. 38.

    Zhao, Y. F., Wang, L., & Lee, S. et al. (2010). Cholesterol induces mitochondrial dysfunction and apoptosis in mouse pancreatic beta-cell line MIN6 cells. Endocrine, 37, 76–82.

    CAS  Article  Google Scholar 

  39. 39.

    Devries-Seimon, T., Li, Y., & Yao, P. M. et al. (2005). Cholesterol-induced macrophage apoptosis requires ER stress pathways and engagement of the type A scavenger receptor. Journal of Cell Biology, 171, 61–73.

    CAS  Article  Google Scholar 

Download references


The subject was supported by: The National Natural Science Foundation of China (No. 81370952).

Author information



Corresponding authors

Correspondence to Dongmin Li or Shemin Lu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liang, D., Osoro, E.K., Tan, S. et al. Effects and Mechanisms of Autophagy Induced by Solubilized-Cholesterol in Hepatocytes: A Comparative Study Among Solvents. Cell Biochem Biophys 78, 357–366 (2020). https://doi.org/10.1007/s12013-020-00917-2

Download citation


  • Cholesterol
  • Methyl-β-cyclodextrin
  • Autophagy
  • Apoptosis