THH Relieves CIA Inflammation by Reducing Inflammatory-related Cytokines


Tripterygium hypoglaucum hutch (THH) is a plant of the genus tripterygium, which is also known as colquhounia, Gelsemiun elegan, and so on. It is mainly distributed in Yunnan, Guizhou, and Sichuan regions and other places in China. To study the immune mechanism of THH on related inflammatory cytokines in collagen II-induced arthritis (CIA) mice, healthy male C57BL/6 mice were used to model CIA mice. Mice received THH 420 mg/kg/day or the same amount of normal saline (NS) by gavage for 20 days. The thickness of the ankle joint in mice was observed, and the arthritis index was calculated. Related inflammatory cytokines were detected by real-time quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. The results showed that after treatment with THH, the CIA mice had less swelling and destruction of the joints as well as decreased foot size and arthritis index. The mRNA and protein levels of TNF-α, IFN-γ, and IL-17A were lower in the THH-treated group than in the NS group (P < 0.05). In summary, THH has great significance in the treatment of CIA mice, including reduced related inflammatory cytokines expression level in both joint tissue and serum. The mechanism of THH in the treatment of CIA may be through the inhibition of the NF-kB-STAT3-IL-17 pathway, which also requires further experimental investigation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Lv, Q., Xiong, S., & Gao, X. et al. (2015). Final report of major program of national natural science foundation of China “the mechanism and regulation of autoantigen immune recognition and response. Bulletin of National Natural Science Foundation of China, 29, 14–18.

    Google Scholar 

  2. 2.

    Molendijk, M., Hazes, J. M., & Lubberts, E. (2018). From patients with arthralgia, pre-RA and recently diagnosed RA: what is the current status of understanding RA pathogenesis? RMD Open, 4, e000256.

    PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Jahreis, S., Kuhn, S., Madaj, A. M., Bauer, M., & Polte, T. (2017). Mold metabolites drive rheumatoid arthritis in mice via promotion of IFN-gamma- and IL-17-producing T cells. Food and Chemical Toxicology, 109, 405–413.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Sun, X., Feng, X., Tan, W., Lin, N., Hua, M., Wei, Y., Wang, F., Li, N., & Zhang, M. (2015). Adiponectin exacerbates collagen-induced arthritis via enhancing Th17 response and prompting RANKL expression. Scientific Reports, 5, 11296.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Lubberts, E. (2015). Role of T lymphocytes in the development of rheumatoid arthritis. Implications for treatment. Current Pharmaceutical Design, 21, 142–146.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Chemin, K., Gerstner, C., & Malmstrom, V. (2019). Effector functions of CD4+ T cells at the site of local autoimmune inflammation-lessons from rheumatoid arthritis. Frontiers in Immunology, 10, 353.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Lubberts, E. (2015). The IL-23-IL-17 axis in inflammatory arthritis. Nature Reviews Rheumatology, 11, 562.

    PubMed  Article  Google Scholar 

  8. 8.

    Jung, S. M., Kim, K. W., Yang, C. W., Park, S. H., & Ju, J. H. (2014). Cytokine-mediated bone destruction in rheumatoid arthritis. Journal of Immunology Research, 2014, 263625.

    PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Huang, Y. (2013). A retrospective study on clinical effect in rheumatoid arthritis patients treated with Tripterygium hypoglaucum (Levl.) hutch decoction. Guangzhou University of Chinese Medicine, Guangzhou, China.

  10. 10.

    Chen, L. (1996). Clinical observation of 120 cases of rheumatoid arthritis treated with Tripterygium hypoglaucum (Levl.) hutch. Chinese Journal of Ethnomedicine and Ethnopharmacy, 22, 9–11.

    Google Scholar 

  11. 11.

    Pan, Z., Li, Z., Zhang, Z., Yang, M., & Zhao, Y. (2016). Research progress on chemical composition and activity of THH. Application of Chemical, 8, 10–14.

    CAS  Google Scholar 

  12. 12.

    Wang, T., Li, Z., Li, T., Yang, X., & Zhang, L. (2019). Research progress on the mechanism of Kunmingshanhaitang in the treatment of rheumatoid arthritis. Rheumatism & Arthritis, 8, 60–63.

    Google Scholar 

  13. 13.

    Guo, Y., Wang, Y., Shi, X., Qin, W., Zhang, X., Xu, J., Liu, X., Yang, D., & Yang, Y. (2018). A metabolomics study on the immunosuppressive effect of Tripterygium hypoglaucum (Levl.) Hutch in mice: the discovery of pathway differences in serum metabolites. Clinica Chimica Acta, 483, 94–103.

    CAS  Article  Google Scholar 

  14. 14.

    Li, Z. Y., Wu, Q., Yan, Z., Li, D., Pan, X., Qiu, T., & Xu, K. (2013). Prevention of acute GVHD in mice by treatment with Tripterygium hypoglaucum Hutch combined with cyclosporin A. Hematology, 18, 352–359.

    PubMed  Article  Google Scholar 

  15. 15.

    Luo, N., Chen, S., & Li, S., et al. (2012). Role of Tripterygium hypoglaucum hutch in CIA rat and its possible mechanism. Modern Immunology, 32, 287–292.

    Google Scholar 

  16. 16.

    Luo, N., Li, S., Yuan, G., Liang, S., & Liu, J. (2013). Experimental immunology Inhibitory action of different doses of tripterygium hypoglaucum hutch on expression of hypoxia inducible factor-1α in collagen II-induced arthritis rat model. Central European Journal of Immunology, 1, 8–14.

    Article  Google Scholar 

  17. 17.

    Takeuchi, T. (2017). Treatment of rheumatoid arthritis with biological agents as a typical and common immune-mediated inflammatory disease. Proceedings of the Japan Academy, Series B, Physical and Biological Sciences, 93, 600–608.

    CAS  Article  Google Scholar 

  18. 18.

    Wang, X., Lu, Y., & Deng, Q., et al. (2014). Comparative study of the collagen-induced arthritis model between DBA/1 and C57BL/6 mice. Journal of Nantong University (Medical Sciences), 34, 254–257.

    CAS  Google Scholar 

  19. 19.

    Zou, H., Zhang, F., & Zhang, G., et al. (2014). Rat rheumatoid arthritis model under the action of THH arthritis index score changes. Chinese and Foreign Medical Research, 12, 14–15.

    Google Scholar 

  20. 20.

    Miao, J., Zhang, K., Lv, M., Li, Q., Zheng, Z., Han, Q., Guo, N., Fan, C., & Zhu, P. (2014). Circulating Th17 and Th1 cells expressing CD161 are associated with disease activity in rheumatoid arthritis. Scandinavian Journal of Rheumatology, 43, 194–201.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Firestein, G. S. (2003). Evolving concepts of rheumatoid arthritis. Nature, 423, 356–361.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Wang, L., Li, X., Liu, J., & Feng, W. (2002). Relationship between disequilibrium of T lymphocyte subgroups and inflammatory adhesion molecules in patients with rheumatoid arthritis. Journal of Immunology, 18, 378–380.

    CAS  Google Scholar 

  23. 23.

    Lee, J., Lee, J., Park, M. K., Lim, M. A., Park, E. M., Kim, E. K., Yang, E. J., Lee, S. Y., Jhun, J. Y., Park, S. H., Kim, H. Y., & Cho, M. L. (2013). Interferon gamma suppresses collagen-induced arthritis by regulation of Th17 through the induction of indoleamine-2,3-deoxygenase. PLoS ONE, 8, e60900.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Page, C. E., Smale, S., Carty, S. M., Amos, N., Lauder, S. N., Goodfellow, R. M., Richards, P. J., Jones, S. A., Topley, N., & Williams, A. S. (2010). Interferon-gamma inhibits interleukin-1beta-induced matrix metalloproteinase production by synovial fibroblasts and protects articular cartilage in early arthritis. Arthritis Research & Therapy, 12, R49.

    Article  Google Scholar 

  25. 25.

    Schurgers, E., Billiau, A., & Matthys, P. (2011). Collagen-induced arthritis as an animal model for rheumatoid arthritis: focus on interferon-gamma. Journal of Interferon & Cytokine Research, 31, 917–926.

    CAS  Article  Google Scholar 

  26. 26.

    Benedetti, G., Bonaventura, P., Lavocat, F., & Miossec, P. (2016). IL-17A and TNF-alpha increase the expression of the antiapoptotic adhesion molecule Amigo-2 in arthritis synoviocytes. Frontiers in Immunology, 7, 254.

    PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Shin, S., Chung, K. Y., & Kim, D. S. (2016). Development of rheumatoid nodules after anti-tumor necrosis factor-alpha treatment with adalimumab for rheumatoid arthritis. Annals of Dermatology, 28, 402–403.

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Herenius, M. M., Oliveira, A. S., Wijbrandts, C. A., Gerlag, D. M., Tak, P. P., & Lebre, M. C. (2013). Anti-TNF therapy reduces serum levels of chemerin in rheumatoid arthritis: a new mechanism by which anti-TNF might reduce inflammation. PLoS ONE, 8, e57802.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Moelants, E. A., Mortier, A., Van Damme, J., & Proost, P. (2013). Regulation of TNF-alpha with a focus on rheumatoid arthritis. Immunology and Cell Biology, 91, 393–401.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    van Schouwenburg, P. A., Rispens, T., & Wolbink, G. J. (2013). Immunogenicity of anti-TNF biologic therapies for rheumatoid arthritis. Nature Reviews Rheumatology, 9, 164–172.

    PubMed  Article  Google Scholar 

  31. 31.

    Mu, L., Sun, B., Kong, Q., Wang, J., Wang, G., Zhang, S., Wang, D., Liu, Y., Liu, Y., An, H., & Li, H. (2009). Disequilibrium of T helper type 1, 2 and 17 cells and regulatory T cells during the development of experimental autoimmune myasthenia gravis. Immunology, 128, e826–e836.

    PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Schminke, B., Trautmann, S., Mai, B., Miosge, N., & Blaschke, S. (2016). Interleukin 17 inhibits progenitor cells in rheumatoid arthritis cartilage. European Journal of Immunology, 46, 440–445.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Sarkar, S., & Fox, D. A. (2010). Targeting IL-17 and Th17 cells in rheumatoid arthritis. Rheumatic Diseases Clinics of North America, 36, 345–366.

    PubMed  Article  Google Scholar 

  34. 34.

    Segal, B. M. (2010). Th17 cells in autoimmune demyelinating disease. Seminars in Immunopathology, 32, 71–77.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Yeremenko, N., Paramarta, J. E., & Baeten, D. (2014). The interleukin-23/interleukin-17 immune axis as a promising new target in the treatment of spondyloarthritis. Current Opinion in Rheumatology, 26, 361–370.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Camilla, J. (2008). Increased numbers of circulating polyfunctional Th17 memory cells in patients with seronegative spondylarthritides. Arthritis & Rheumatism, 8, 2307–2317.

    Google Scholar 

  37. 37.

    Yago, T., Nanke, Y., Kawamoto, M., Kobashigawa, T., Yamanaka, H., & Kotake, S. (2017). IL-23 and Th17 disease in inflammatory arthritis. Journal of Clinical Medicine, 6, 81.

    PubMed Central  Article  Google Scholar 

  38. 38.

    Ksiazek-Winiarek, D., Szpakowski, P., Turniak, M., Szemraj, J., & Glabinski, A. (2017). IL-17 exerts anti-apoptotic effect via miR-155-5p downregulation in experimental autoimmune encephalomyelitis. Journal of Molecular Neuroscience, 63, 320–332.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Du, L, Sun, W., & Ding, L., et al. (2016). Effect of recombinant hIL-10 on lymphocytes and IL-17A of an AA rat model. Chinese Journal of Immunology, 32, 476–479.

    Google Scholar 

Download references


This study was supported by Guangxi Natural Science Foundation Project (Nos. 2016GXNSFAA380283 and 2017GXNSFAA198025). Thanks to Science Experiment Center of Guilin Medical University for providing equipment and operation platform.

Author Contributions

Study concept and design: N.L., X. Zhou, Q.L., X. Zhao. Acquisition of data: X. Zhou, Q.L., J.Z., X. Zhou, W.L., N.L. Analysis and interpretation of the data: All authors. Wrote the paper: X. Zhou, N.L., Q.L. All authors reviewed the manuscript before submission.

Author information



Corresponding authors

Correspondence to Xiangfeng Zhao or Naixiang Luo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Liu, Q., Zhou, X. et al. THH Relieves CIA Inflammation by Reducing Inflammatory-related Cytokines. Cell Biochem Biophys 78, 367–374 (2020).

Download citation


  • Tripterygium hypoglaucum hutch (THH)
  • Collagen II-induced arthritis (CIA)
  • Inflammatory cytokine