Skip to main content
Log in

Superoxide Formation in Cardiac Mitochondria and Effect of Phenolic Antioxidants

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Since mitochondria are the main cellular source of reactive oxygen species, it is important to study the effect of dietary phenolic compounds on the level of ROS in these organelles. Using the EPR spectroscopy and TIRON probe, the ability of the investigated phenols (quercetin, rutin, caffeic acid, curcumin, and resveratrol) to scavenge superoxide anion radicals generated by isolated heart mitochondria of Wistar rats under variable oxygen partial pressure was studied. It was shown that during a 10 min incubation, caffeic acid in concentrations of 10–500 μM most effectively scavenged superoxide radicals formed in the complex III of the mitochondrial respiratory chain. A comparable antioxidant effect of rutin under these experimental conditions was observed at higher concentrations of 1–10 mM. The antioxidant activity of quercetin in the concentration range of 10–500 μM during the first minutes of incubation was higher than that of caffeic acid. Of the phenolic compounds studied, curcumin had the least effect on the superoxide radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Caf-OH:

caffeic acid (3,4-dihydroxycinnamic acid)

Cur:

curcumin ((1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione)

LiPc:

lithium phthalocyanine

LDL:

low density lipoprotein

O2 •− :

superoxide anion radical

Qu:

quercetin (3,3',4',5,7-pentahydroxyflavone)

ROS:

reactive oxygen species

Rsv:

resveratrol (3,5,4'-trihydroxy-trans-stilbene)

Rut:

rutin (vitamin P)

TEMPONE-15N-D16 :

4-oxo-2,2,6,6-tetramethylpiperidine-D16-1-oxyl-15N

TIRON:

4,5-dihydroxybenzene-1,3-disulfonate, disodium salt

References

  1. Visioli, F., De La Lastra, C. A., Andres-Lacueva, C., Aviram, M., Calhau, C., Cassano, A., D’Archivio, M., Faria, A., Favé, G., Fogliano, V., Llorach, R., Vitaglione, P., Zoratti, M., & Edeas, M. (2011). Polyphenols and human health: a prospectus. Critical Reviews in Food Science and Nutrition, 51, 524–546.

    Article  CAS  PubMed  Google Scholar 

  2. Gibellini, L., Bianchini, E., De Biasi, S., Nasi, M., Cossarizza, A., & Pinti, M. (2015). Natural compounds modulating mitochondrial functions. Evidence-Based Complementary and Alternative Medicine, 2015, 527209.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jia, Z., Zhu, H., Misra, B. R., Mahaney, J. E., Li, Y., & Misra, H. P. (2008). EPR studies on the superoxide-scavenging capacity of the nutraceutical resveratrol. Molecular and Cellular Biochemistry, 313, 187–194.

    Article  CAS  PubMed  Google Scholar 

  4. Ksenzenko, M., Konstantinov, A. A., Khomutov, G. B., Tikhonov, A. N., & Ruuge, E. K. (1983). Effect of electron transfer inhibitors on superoxide generation in the cytochrome bc1 site of the mitochondrial respiratory chain. FEBS Letters, 155, 19–24.

    Article  CAS  PubMed  Google Scholar 

  5. Moukette, B. M., Pieme, C. A., Njimou, J. R., Nya Biapa, C. P., Marco, B., & Ngogang, J. Y. (2015). In vitro antioxidant properties, free radicals scavenging activities of extracts and polyphenol composition of a non-timber forest product used as spice: Monodora myristica. Biological Research, 48, 15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Benedec, D., Vlase, L., Oniga, I., Mot, A. C., Damian, G., Hanganu, D., Duma, M., & Silaghi-Dumitrescu, R. (2013). Polyphenolic composition, antioxidant and antibacterial activities for two romanian subspecies of Achillea distans Waldst. et Kit. ex Willd. Molecules, 18, 8725–8739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gorlach, S., Fichna, J., & Lewandowska, U. (2015). Polyphenols as mitochondria-targeted anticancer drugs. Cancer Letters, 366, 141–149.

    Article  CAS  PubMed  Google Scholar 

  8. Nimse, S. B., & Pal, D. (2015). Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances, 5, 27986–28006.

    Article  CAS  Google Scholar 

  9. Pietraforte, D., Turco, L., Azzini, E., & Minetti, M. (2002). On-line EPR study of free radicals induced by peroxidase/H2O2 in human low-density lipoprotein. Biochimica et Biophysica Acta, 1583, 176–184.

    Article  CAS  PubMed  Google Scholar 

  10. Khan, F. A., Maalik, A., & Murtaza, G. (2016). Inhibitory mechanism against oxidative stress of caffeic acid. Journal of Food and Drug Analysis, 24, 695–702.

    Article  CAS  PubMed  Google Scholar 

  11. Villano, D., Fernandez-Pachon, M. S., Troncoso, A. M., & Garcıa-Parrilla, M. C. (2005). Comparison of antioxidant activity of wine phenolic compounds and metabolites in vitro. Analytica Chimica Acta, 538, 391–398.

    Article  CAS  Google Scholar 

  12. Laranjinha, J., & Cadenas, E. (1999). Redox cycles of caffeic acid, α-tocopherol, and ascorbate: implications for protection of low-density lipoproteins against oxidation. Life, 48, 57–65.

    CAS  PubMed  Google Scholar 

  13. Bors, W., & Michel, C. (2002). Chemistry of the antioxidant effect of polyphenols. Annals of the New York Academy of Sciences, 957, 57–69.

    Article  CAS  PubMed  Google Scholar 

  14. Hou, H., Grinberg, O. Y., Taie, S., Leichtweis, S., Miyake, M., Grinberg, S., Xie, H., Csete, M., & Swartz, H. M. (2003). Electron paramagnetic resonance assessment of brain. tissue oxygen tension in anesthetized rats. Anesthesia and Analgesia, 96, 1467–1472.

    Article  PubMed  Google Scholar 

  15. James, P. E., Grinberg, O. Y., & Swartz, H. M. (1998). Superoxide production by phagocytosing macrophages in relation to the intracellular distribution of oxygen. Journal of Leukocyte Biology, 64, 78–84.

    Article  CAS  PubMed  Google Scholar 

  16. Greenstock, C. L., & Miller, R. W. (1975). The oxidation of Tiron by superoxide anion: kinetics of the reaction in aqueous solution and in chloroplasts. Biochimica et Biophysica Acta, 396, 11–16.

    Article  CAS  PubMed  Google Scholar 

  17. Otto, M., Stach, J., Kirmse, R., & Werner, G. (1981). The Tiron radical as indicator substance in catalytic determination of trace metals. Talanta, 28, 345–347.

    Article  CAS  PubMed  Google Scholar 

  18. Ledenev, A. N., Konstantinov, A. A., Popova, E. Y., & Ruuge, E. K. (1986). A simple assay of the superoxide generation rate with Tiron as an EPR-visible radical scavenger. Biochemistry International, 13, 391–396.

    CAS  PubMed  Google Scholar 

  19. Korkina, O. V., & Ruuge, E. K. (2000). Generation of superoxide radicals by heart mitochondria: a study by the method of spin trapping under conditions of constant oxygenation. Biofizika, 45, 695–699.

    CAS  Google Scholar 

  20. Bors, W., Saran, M., & Michel, C. (1979). Pulse-radiolytic investigations of catechols and catecholamines. II. Reactions of Tiron with oxygen radical species. Biochimica et Biophysica Acta, 582, 537–542.

    Article  CAS  PubMed  Google Scholar 

  21. Pietta, P. (2000). Flavonoids as antioxidants. Journal of Natural Products, 63, 1035–1042.

    Article  CAS  PubMed  Google Scholar 

  22. Mura, F., Silva, T., Castro, C., Borges, F., Zuniga, M. C., Morales, J., & Olea-Azar, C. (2014). New insights into the antioxidant activity of hydroxycinnamic and hydroxybenzoic systems: Spectroscopic, electrochemistry, and cellular studies. Free Radical Research, 48, 1473–1484.

    Article  CAS  PubMed  Google Scholar 

  23. Fernandez-Panchon, M. S., Villano, D., Troncoso, A. M., & Garcia-Parrilla, M. C. (2008). Antioxidant activity of phenolic compounds: from in vitro results to in vivo evidence. Critical Reviews in Food Science and Nutrition, 48, 649–671.

    Article  CAS  PubMed  Google Scholar 

  24. Ghorbani, A. (2017). Mechanisms of antidiabetic effects of flavonoid rutin. Biomedicine & Pharmacotherapy, 96, 305–312.

    Article  CAS  Google Scholar 

  25. Karlsson, J., Emgard, M., Brundin, P., & Burkitt, M. J. (2000). trans-Resveratrol protects embryonic mesencephalic cells from tert-butyl hydroperoxide: electron paramagnetic resonance spin trapping evidence for a radical scavenging mechanism. Journal of Neurochemistry, 75, 141–150.

    Article  CAS  PubMed  Google Scholar 

  26. Das, K. C., & Das, C. K. (2002). Curcumin (diferuloylmethane), a singlet oxygen (1O2) quencher. Biochemical and Biophysical Research Communications, 295, 62–66.

    Article  CAS  PubMed  Google Scholar 

  27. Priyadarsini, K. I. (2013). Chemical and Structural Features Influencing the Biological Activity of Curcumin. Current Pharmaceutical Design, 11, 2093–2100.

    Google Scholar 

  28. Choudhury, A. K., Raja, S., Mahapatra, S., Nagabhushanam, K., & Majeed, M. (2015). Synthesis and evaluation of the anti-oxidant capacity of curcumin glucuronides, the major curcumin metabolites. Antioxidants, 4, 750–767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sirota, R., Gibson, D. B., & Kohen, R. (2015). The role of the catecholic and the electrophilic moieties of caffeic acid in Nrf2/Keap1 pathway activation in ovarian carcinoma cell lines. Redox Biology, 4, 48–59.

    Article  CAS  PubMed  Google Scholar 

  30. Chouchani, E. T., Methner, C., Nadtochiy, S. M., Logan, A., Pell, V. R., Ding, S., James, A. M., Cochemé, H. M., Reinhold, J., Lilley, K. S., Partridge, L., Fearnley, I. M., Robinson, A. J., Hartley, R. C., Smith, R. A., Krieg, T., Brookes, P. S., & Murphy, M. P. (2013). Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nature Medicine, 19, 753–759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Potapovich, A., & Kostyuk, V. A. (2003). Comparative study of antioxidant properties and cytoprotective activity of flavonoids. Biochemistry (Moscow), 68, 514–519.

    Article  CAS  Google Scholar 

  32. Sandoval-Acuna, C., Ferreira, J., & Speisky, H. (2014). Polyphenols and mitochondria: an update on their increasingly emerging ROS-scavenging independent actions. Archives of Biochemistry and Biophysics, 559, 75–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Foundation for Basic Research (grants 15-04-05211 and 18-015-00125).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enno K. Ruuge.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudylina, A.L., Ivanova, M.V., Shumaev, K.B. et al. Superoxide Formation in Cardiac Mitochondria and Effect of Phenolic Antioxidants. Cell Biochem Biophys 77, 99–107 (2019). https://doi.org/10.1007/s12013-018-0857-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-018-0857-2

Keywords

Navigation