Skip to main content
Log in

Transforming Growth Factor Beta (TFG-β) Concentration Isoforms are Diminished in Acute Coronary Syndrome

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Acute coronary syndrome (ACS) is the leading cause of death in elderly patients worldwide. Due its participation in apoptosis, fibrosis, and angiogenesis, transforming growth factor-β (TGF-β) isoforms had been categorized as risk factors for cardiovascular diseases. However, due their contradictory activities, a cardioprotective role has been suggested. The aim was to measure the plasma levels of TGF-β1, 2, and 3 proteins in patients with ACS. This was a case–control study including 225 subjects. The three activated isoforms were measured in serum using the Bio-Plex Pro TGF-β assay by means of magnetic beads; the fluorescence intensity of reporter signal was read in a Bio-Plex Magpix instrument. We observed a significant reduction of the three activated isoforms of TGF-β in patients with ACS. The three TGF-β isoforms were positively correlated with each other in moderate-to-strong manner. TGFβ-2 was inversely correlated with glucose and low-density lipoprotein (LDL)-cholesterol, whereas TGF-β3 was inversely correlated with the serum cholesterol concentration. The production of TGF-β1, TGF-β2, and TGF-β3 are decreased in the serum of patients with ACS. Further follow-up controlled studies with a larger sample size are needed, in order to test whether TGF-β isoforms could be useful as biomarkers that complement the diagnosis of ACS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kumar, A., & Cannon, C. P. (2009). Acute coronary syndromes: diagnosis and management, part I. Mayo Clinic Proceedings Mayo Clinic, 84, 917–938.

    Article  Google Scholar 

  2. Nagesh, C. M., & Roy, A. (2010). Role of biomarkers in risk stratification of acute coronary syndrome. The Indian Journal of Medical Research, 132, 627–633.

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Kamath, D. Y., Xavier, D., Sigamani, A., & Pais, P. (2015). High sensitivity C-reactive protein (hsCRP) & cardiovascular disease: an Indian perspective. The Indian Journal of Medical Research, 142, 261–268.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Letterio, J. J., & Roberts, A. B. (1998). Regulation of immune responses by TGF-beta. Annual Review of Immunology, 16, 137–161.

    Article  PubMed  CAS  Google Scholar 

  5. Heldin C.-H., Moustakas A. (2016) Signaling receptors for TGF-β family members. Cold Spring Harbor Perspectives in Biology, 8, 22–53.

  6. Accornero, F., van Berlo, J. H., Correll, R. N., Elrod, J. W., Sargent, M. A., & York, A., et al. (2015). Genetic analysis of connective tissue growth factor as an effector of transforming growth factor β signaling and cardiac remodeling. Molecular and Cellular Biology, 35, 2154–2164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Pardali, E., Goumans, M.-J., & ten Dijke, P. (2010). Signaling by members of the TGF-beta family in vascular morphogenesis and disease. Trends in Cell Biology, 20, 556–567.

    Article  PubMed  CAS  Google Scholar 

  8. Kinlay, S., & Ganz, P. (2000). Relation between endothelial dysfunction and the acute coronary syndrome: implications for therapy. The American Journal of Cardiology, 86, 10J–13J. discussion 13J-14J.

    Article  PubMed  CAS  Google Scholar 

  9. Jiang, J., Zhang, Y., Peng, K., Wang, Q., Hong, X., & Li, H., et al. (2017). Combined delivery of a TGF-β inhibitor and an adenoviral vector expressing interleukin-12 potentiates cancer immunotherapy. Acta Biomaterialia, 61, 114–123.

    Article  PubMed  CAS  Google Scholar 

  10. Rosenkranz, S. (2004). TGF-beta1 and angiotensin networking in cardiac remodeling. Cardiovascular Research, 63, 423–432.

    Article  PubMed  CAS  Google Scholar 

  11. Zhang, Q., Cui, F., Fang, L., Hong, J., Zheng, B., & Zhang, J. Z. (2013). TNF-α impairs differentiation and function of TGF-β-induced Treg cells in autoimmune diseases through Akt and Smad3 signaling pathway. Journal of Molecular Cell Biology, 5, 85–98.

    Article  PubMed  CAS  Google Scholar 

  12. Ohtsuka, K., Gray, J. D., Stimmler, M. M., Toro, B., & Horwitz, D. A. (1998). Decreased production of TGF-beta by lymphocytes from patients with systemic lupus erythematosus. J Immunol Baltimore Maryland 1950, 160, 2539–2545.

    CAS  Google Scholar 

  13. Dabek, J., Kułach, A., Monastyrska-Cup, B., & Gasior, Z. (2006). Transforming growth factor beta and cardiovascular diseases: the other facet of the “protective cytokine. Pharmacol Rep PR, 58, 799–805.

    PubMed  CAS  Google Scholar 

  14. Frangogiannis, N. G. (2017). The role of transforming growth factor (TGF)-β in the infarcted myocardium. Journal of Thoracic Disease, 9, S52–S63.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Frangogiannis, N. G. (2015). Pathophysiology of myocardial infarction. Compr Physiol, 5, 1841–1875.

    Article  PubMed  Google Scholar 

  16. Mukaka, M. M. (2012). Statistics corner: a guide to appropriate use of correlation coefficient in medical research. Malawi Medical Journal, 24, 69–71.

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Santibañez, J. F., Quintanilla, M., & Bernabeu, C. (2011). TGF-β/TGF-β receptor system and its role in physiological and pathological conditions. Clinical Science, 121, 233–251.

    Article  PubMed  CAS  Google Scholar 

  18. Euler, G. (2015). Good and bad sides of TGFβ-signaling in myocardial infarction. Frontiers in Physiology, 6, 66.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chandra, K. S. (2012). Composite risk scores for acute coronary syndromes. Indian Heart Journal, 64, 270–272.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Liu, Y., Yuan, X., Li, W., Cao, Q., & Shu, Y. (2016). Aspirin-triggered resolvin D1 inhibits TGF-β1-induced EMT through the inhibition of the mTOR pathway by reducing the expression of PKM2 and is closely linked to oxidative stress. International Journal of Molecular Medicine, 38, 1235–1242.

    Article  PubMed  CAS  Google Scholar 

  21. Ji, Q., Guo, M., Zheng, J., Mao, X., Peng, Y., & Li, S., et al. (2009). Downregulation of T helper cell type 3 in patients with acute coronary syndrome. Archives of Medical Research, 40, 285–293.

    Article  PubMed  CAS  Google Scholar 

  22. Schaan, B. D., Quadros, A. S., Sarmento-Leite, R., De Lucca, G., Bender, A., & Bertoluci, M. (2007). “Correction:” Serum transforming growth factor beta-1 (TGF-beta-1) levels in diabetic patients are not associated with pre-existent coronary artery disease. Cardiovascular Diabetology, 6, 19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Tashiro, H., Shimokawa, H., Sadamatu, K., & Yamamoto, K. (2002). Prognostic significance of plasma concentrations of transforming growth factor-beta in patients with coronary artery disease. Coronary Artery Disease, 13, 139–143.

    Article  PubMed  Google Scholar 

  24. Herder, C., Peeters, W., Zierer, A., de Kleijn, D. P. V., Moll, F. L., & Karakas, M., et al. (2012). TGF-β1 content in atherosclerotic plaques, TGF-β1 serum concentrations and incident coronary events. European Journal of Clinical Investigation, 42, 329–337.

    Article  PubMed  CAS  Google Scholar 

  25. Redondo, S., Santos-Gallego, C. G., & Tejerina, T. (2007 Aug). TGF-beta1: a novel target for cardiovascular pharmacology. Cytokine and Growth Factor Reviews, 18, 279–286.

    Article  PubMed  CAS  Google Scholar 

  26. Madrid-Miller, A., Chávez-Sánchez, L., Careaga-Reyna, G., Borrayo-Sánchez, G., Chávez-Rueda, K., & Montoya-Guerrero, S. A., et al. (2014). Clinical outcome in patients with acute coronary syndrome and outward remodeling is associated with a predominant inflammatory response. BMC Research Notes, 7, 669.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Frantz, S., Hu, K., Adamek, A., Wolf, J., Sallam, A., & Maier, S. K. G., et al. (2008). Transforming growth factor beta inhibition increases mortality and left ventricular dilatation after myocardial infarction. Basic Research in Cardiology, 103, 485–492.

    Article  PubMed  CAS  Google Scholar 

  28. Okada, H., Takemura, G., Kosai, K., Li, Y., Takahashi, T., & Esaki, M., et al. (2005). Postinfarction gene therapy against transforming growth factor-beta signal modulates infarct tissue dynamics and attenuates left ventricular remodeling and heart failure. Circulation, 111, 2430–2437.

    Article  PubMed  CAS  Google Scholar 

  29. Chen, C.-L., Liu, I.-H., Fliesler, S. J., Han, X., Huang, S. S., & Huang, J. S. (2007). Cholesterol suppresses cellular TGF-beta responsiveness: implications in atherogenesis. Journal of Cell Science, 120, 3509–3521.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Bugyei-Twum, A., Advani, A., Advani, S. L., Zhang, Y., Thai, K., & Kelly, D. J., et al. (2014). High glucose induces Smad activation via the transcriptional coregulator p300 and contributes to cardiac fibrosis and hypertrophy. Cardiovascular diabetology, 13, 89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Puskás, L. G., Nagy, Z. B., Giricz, Z., Onody, A., Csonka, C., & Kitajka, K., et al. (2004). Cholesterol diet-induced hyperlipidemia influences gene expression pattern of rat hearts: a DNA microarray study. FEBS Letters, 562, 99–104.

    Article  PubMed  CAS  Google Scholar 

  32. Han, J., Hajjar, D. P., Tauras, J. M., Feng, J., Gotto, A. M., & Nicholson, A. C. (2000). Transforming growth factor-beta1 (TGF-beta1) and TGF-beta2 decrease expression of CD36, the type B scavenger receptor, through mitogen-activated protein kinase phosphorylation of peroxisome proliferator-activated receptor-gamma. The Journal of Biological Chemistry, 275, 1241–1246.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank all of the participants in this study

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeminia Valle.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padilla-Gutiérrez, J.R., Valdés-Alvarado, E., Rodríguez-Reyes, S.C. et al. Transforming Growth Factor Beta (TFG-β) Concentration Isoforms are Diminished in Acute Coronary Syndrome. Cell Biochem Biophys 76, 433–439 (2018). https://doi.org/10.1007/s12013-018-0849-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-018-0849-2

Keywords

Navigation