Skip to main content
Log in

LRIG1 Improves Chemosensitivity Through Inhibition of BCL-2 and MnSOD in Glioblastoma

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

We have reported that Leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) can improve the chemosensitivity in U251 cells. However, the underlying mechanisms how LRIG1 improves the chemosensitivity remain unknown. In this study, we reported that LRIG1 can improve the chemosensitivity through the inhibition of B cell lymphoma 2 (BCL-2) and manganese superoxide dismutase (MnSOD). In addition, we showed that the expression level of LRIG1 was significantly negatively correlated with BCL-2 and MnSOD expression in glioma. Our research demonstrated that overexpression of LRIG1 can enhance the chemosensitivity. BCL-2 and MnSOD were inhibited in LRIG1 overexpressing cells. On the other hand, when BCL-2 and MnSOD were knocked down, the chemosensitivity of U251 cells decreased, and the effect of LRIG1 in regulating chemosensitivity was compromised. For the first time, our results showed that LRIG1 can enhance chemosensitivity in glioblastoma by inhibition of BCL-2 and MnSOD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nikiforova, M. N., & Hamilton, R. L. (2011). Molecular diagnostics of gliomas. Archives of Pathology and Laboratory Medicine, 135(5), 558–568.

    CAS  PubMed  Google Scholar 

  2. Nikaki, A., Piperi, C., & Papavassiliou, A. G. (2012). Role of microRNAs in gliomagenesis: Targeting miRNAs in glioblastoma multiforme therapy. Expert Opinion on Investigational Drugs, 21(10), 1475–1488.

    Article  CAS  PubMed  Google Scholar 

  3. Spinelli, G. P., et al. (2012). Chemotherapy and target therapy in the management of adult high-grade gliomas. Current Cancer Drug Targets, 12(8), 1016–1031.

    Article  CAS  PubMed  Google Scholar 

  4. Sun, S., et al. (2012). Hyperoxia resensitizes chemoresistant human glioblastoma cells to temozolomide. Journal of Neuro-Oncology, 109(3), 467–475.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Alla, V., et al. (2012). E2F1 confers anticancer drug resistance by targeting ABC transporter family members and BCL-2 via the p73/DNp73-miR-205 circuitry. Cell Cycle, 11(16), 3067–3078.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Greaves, W., et al. (2012). Detection of ABCC1 expression in classical Hodgkin lymphoma is associated with increased risk of treatment failure using standard chemotherapy protocols. Journal of Hematology & Oncology, 5, 47.

    Article  CAS  Google Scholar 

  7. Herraez, E., et al. (2012). Cisplatin-induced chemoresistance in colon cancer cells involves FXR-dependent and FXR-independent up-regulation of ABC proteins. Molecular Pharmaceutics, 9(9), 2565–2576.

    Article  CAS  PubMed  Google Scholar 

  8. Michalak, K., & Wesolowska, O. (2012). Polyphenols counteract tumor cell chemoresistance conferred by multidrug resistance proteins. Anti-Cancer Agents in Medicinal Chemistry, 12(8), 880–890.

    Article  CAS  PubMed  Google Scholar 

  9. Minami, T., et al. (2012). HER2 as therapeutic target for overcoming ATP-binding cassette transporter-mediated chemoresistance in small cell lung cancer. Molecular Cancer Therapeutics, 11(4), 830–841.

    Article  CAS  PubMed  Google Scholar 

  10. Tian, C., et al. (2012). Common variants in ABCB1, ABCC2 and ABCG2 genes and clinical outcomes among women with advanced stage ovarian cancer treated with platinum and taxane-based chemotherapy: A Gynecologic Oncology Group study. Gynecologic Oncology, 124(3), 575–581.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Nilsson, J., et al. (2001). Cloning, characterization, and expression of human LIG1. Biochemical and Biophysical Research Communications, 284(5), 1155–1161.

    Article  CAS  PubMed  Google Scholar 

  12. Holmlund, C., et al. (2004). Characterization and tissue-specific expression of human LRIG2. Gene, 332, 35–43.

    Article  CAS  PubMed  Google Scholar 

  13. Guo, D., et al. (2004). The LRIG gene family has three vertebrate paralogs widely expressed in human and mouse tissues and a homolog in Ascidiacea. Genomics, 84(1), 157–165.

    Article  CAS  PubMed  Google Scholar 

  14. Suzuki, Y., et al. (1996). cDNA cloning of a novel membrane glycoprotein that is expressed specifically in glial cells in the mouse brain. LIG-1, a protein with leucine-rich repeats and immunoglobulin-like domains. Journal of Biological Chemistry, 271(37), 22522–22527.

    Article  CAS  PubMed  Google Scholar 

  15. Yi, W., et al. (2009). Expression of leucine-rich repeats and immunoglobulin-like domains (LRIG) proteins in human ependymoma relates to tumor location, WHO grade, and patient age. Clinical Neuropathology, 28(1), 21–27.

    Article  CAS  PubMed  Google Scholar 

  16. Liu, B., Chen, Q., Tian, D., Wu, L., Wang, J., Cai, Q., et al. (2011). Increased leucine-rich repeats and immunoglobulin-like domains 1 expression enhances chemosensitivity. Neural Regeneration Research, 6(32), 2516–2520.

    CAS  Google Scholar 

  17. Johnson, D. R., & Chang, S. M. (2012). Recent medical management of glioblastoma. Advances in Experimental Medicine and Biology, 746, 26–40.

    Article  CAS  PubMed  Google Scholar 

  18. Higgins, C. F. (2007). Multiple molecular mechanisms for multidrug resistance transporters. Nature, 446(7137), 749–757.

    Article  CAS  PubMed  Google Scholar 

  19. Jennings, M. T., & Iyengar, S. (2001). The molecular genetics of therapeutic resistance in malignant astrocytomas. The American Journal of Pharmacogenomics, 1(2), 93–99.

    Article  CAS  Google Scholar 

  20. Stupp, R., et al. (2007). Chemoradiotherapy in malignant glioma: Standard of care and future directions. Journal of Clinical Oncology, 25(26), 4127–4136.

    Article  CAS  PubMed  Google Scholar 

  21. Lu, C., & Shervington, A. (2008). Chemoresistance in gliomas. Molecular and Cellular Biochemistry, 312(1–2), 71–80.

    Article  CAS  PubMed  Google Scholar 

  22. Wang, X., et al. (2012). LRIG1 enhances cisplatin sensitivity of glioma cell lines. Oncology Research, 20(5–6), 205–211.

    Article  CAS  PubMed  Google Scholar 

  23. Desjardins, A., Reardon, D. A., & Vredenburgh, J. J. (2009). Current available therapies and future directions in the treatment of malignant gliomas. Biologics, 3, 15–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Johansson, M., et al. (2013). The soluble form of the tumor suppressor LRIG1 potently inhibits in vivo glioma growth irrespective of EGF receptor status. Neuro-Oncology, 15(9), 1200–1211.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Yang, C. H., et al. (2013). Pulsed radiofrequency treatment attenuates increases in spinal excitatory amino acid release in rats with adjuvant-induced mechanical allodynia. NeuroReport, 24(8), 431–436.

    CAS  PubMed  Google Scholar 

  26. Yi, W., et al. (2011). Paracrine regulation of growth factor signaling by shed leucine-rich repeats and immunoglobulin-like domains 1. Experimental Cell Research, 317(4), 504–512.

    Article  CAS  PubMed  Google Scholar 

  27. Ye, F., et al. (2009). Upregulation of LRIG1 suppresses malignant glioma cell growth by attenuating EGFR activity. Journal of Neuro-Oncology, 94(2), 183–194.

    Article  CAS  PubMed  Google Scholar 

  28. Stutz, M. A., et al. (2008). LRIG1 negatively regulates the oncogenic EGF receptor mutant EGFRvIII. Oncogene, 27(43), 5741–5752.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Griguer, C. E., & Oliva, C. R. (2011). Bioenergetics pathways and therapeutic resistance in gliomas: Emerging role of mitochondria. Current Pharmaceutical Design, 17(23), 2421–2427.

    Article  CAS  PubMed  Google Scholar 

  30. Decleves, X., et al. (2006). Role of ABC transporters in the chemoresistance of human gliomas. Current Cancer Drug Targets, 6(5), 433–445.

    Article  CAS  PubMed  Google Scholar 

  31. Sodani, K., et al. (2012). GW583340 and GW2974, human EGFR and HER-2 inhibitors, reverse ABCG2- and ABCB1-mediated drug resistance. Biochemical Pharmacology, 83(12), 1613–1622.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Ng, W. H., et al. (2009). Glial cell-line derived neurotrophic factor (GDNF) family of ligands confer chemoresistance in a ligand-specific fashion in malignant gliomas. Journal of Clinical Neuroscience, 16(3), 427–436.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (No. 30973072, 81372683), the Fundamental Research Funds for the Central Universities (No. 201130202020001, T2011302008, 224222), Neural tumor research project (csno-2013-MSD 004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianhou Yuan or Qianxue Chen.

Additional information

Jianjun Ding and Baohui Liu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, J., Liu, B., He, Y. et al. LRIG1 Improves Chemosensitivity Through Inhibition of BCL-2 and MnSOD in Glioblastoma. Cell Biochem Biophys 71, 27–33 (2015). https://doi.org/10.1007/s12013-014-0139-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0139-6

Keywords

Navigation