Skip to main content

Advertisement

Log in

Low-Voltage Direct-Current Stimulation is Safe and Promotes Angiogenesis in Rabbits with Myocardial Infarction

  • Original Research
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

This study evaluates safety and efficacy of low-voltage direct-current (DC) electrical stimulation of angiogenesis in rabbits with myocardial infarction (MI). Thirty Japanese rabbits were divided into treatment and control groups, and MI was induced by ligation of the left circumflex (LCX) artery. Two platinum electrodes were placed directly on the epicardium on either side of LCX artery. Low-voltage DC stimulation (4.0 V/cm, 30 min/day) was performed in the treatment group immediately after surgery until fourth week post-operatively. Cardio-electrophysiological, respiratory, hematological, blood biochemical, histopathological, immunohistochemical parameters, as well as capillary density at the marginal zone of myocardial infarct were compared between treatment and control groups. Capillary density in the treatment group (63.1 ± 2.2) was significantly higher (P < 0.01) than that in controls (45.4 ± 3.9). Overall mortality was 6.7%, and the prevalences of pneumothorax and intraoperative arrhythmia were 3.3 and 6.7%, respectively. Transient hypotension, anemia, leukocytosis, hypoxemia, and a slight increase in myocardial enzymes levels were observed in both groups. Regarding electrical stimulation, no adverse reactions except a minor infiltration of inflammatory cells and mild degeneration were observed in the myocardium. It was, therefore, concluded that low-voltage DC stimulation in the MI rabbits was not only safe but also effective in promoting angiogenesis in the myocardium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sebastian, P., Cohen, M. V., & Downey, J. M. (2005). Animal models for the study of myocardial protection against ischemia. Drug Discovery Today: Disease Models, 2, 219–225.

    Article  Google Scholar 

  2. Park, J. M., Choe, Y. H., Chang, S., Sung, Y. M., Kang, S. S., Kim, M. J., et al. (2004). Usefulness of multidetector-row CT in the evaluation of reperfused myocardial infarction in a rabbit model. Korean Journal of Radiology, 5, 19–24.

    Article  PubMed  Google Scholar 

  3. Blatt, A., Robinson, D., Cotter, G., Efrati, S., Simantov, Y., Bar, I., et al. (2003). Improved regional left ventricular function after successful satellite cell grafting in rabbits with myocardial infarction. European Journal of Heart Failure, 5, 751–757.

    Article  PubMed  Google Scholar 

  4. Bull, D. A., Bailey, S. H., Rentz, J. J., Zebrack, J. S., Lee, M., Litwin, S. E., et al. (2003). Effect of Terplex/VEGF-165 gene therapy on left ventricular function and structure following myocardial infarction. VEGF gene therapy for myocardial infarction. Journal of Controlled Release, 93, 175–181.

    Article  CAS  PubMed  Google Scholar 

  5. Reffelmann, T., & Kloner, R. A. (2004). Effects of adenosine and verapamil on anatomic no-reflow in a rabbit model of coronary artery occlusion and reperfusion. Journal of Cardiovascular Pharmacology, 43, 580–588.

    Article  CAS  PubMed  Google Scholar 

  6. Fujita, M., Morimoto, Y., Ishihara, M., Shimizu, M., Takase, B., Maehara, T., et al. (2004). A new rabbit model of myocardial infarction without endotracheal intubation. Journal of Surgical Research, 116, 124–128.

    Article  PubMed  Google Scholar 

  7. Alat, I., Inan, M., Gurses, I., Kekilli, E., Germen, B., Harma, A., et al. (2004). The mechanical or electrical induction of medullary angiogenesis: Will it improve sternal wound healing? Texas Heart Institute Journal, 31, 363–367.

    PubMed  Google Scholar 

  8. Hang, J., Kong, L., GU, J. W., & Thomas, H. A. (1995). VEGF gene expression is upregulated in electrically stimulated rat skeletal muscle. American Journal of Physiology, 269(5 Pt 2), H1827–H1831.

    CAS  PubMed  Google Scholar 

  9. Brown, M., McDonnell, M. K., & Menton, D. N. (1988). Electrical stimulation effects on cutaneous wound healing in rabbits. A follow-up study. Physical Therapy, 68, 955–960.

    CAS  PubMed  Google Scholar 

  10. Ishida, M., Fujioka, M., Takahashi, K. A., Arai, Y., & Kubo, T. (2008). Electromagnetic fields: A novel prophylaxis for steroid-induced osteonecrosis. Clinical Orthopaedics and Related Research, 466, 1068–1073.

    Article  PubMed  Google Scholar 

  11. Callaghan, M. J., Chang, E. I., Seiser, N., Aarabi, S., Ghali, S., Kinnucan, E. R., et al. (2008). Pulsed electromagnetic fields accelerate normal and diabetic wound healing by increasing endogenous FGF-2 release. Plastic and Reconstructive Surgery, 121, 130–141.

    Article  CAS  PubMed  Google Scholar 

  12. Bai, H., McCaig, C. D., Forrester, J. V., & Zhao, M. (2004). DC electric fields induce distinct preangiogenic responses in microvascular and macrovascular cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 1234–1239.

    Article  CAS  PubMed  Google Scholar 

  13. James, T. N., Riddick, L., & Embry, J. H. (1990). Cardiac abnormalities demonstrated postmortem in four cases of accidental electrocution and their potential significance relative to nonfatal electrical injuries of the heart. American Heart Journal, 120, 143–157.

    Article  CAS  PubMed  Google Scholar 

  14. Accord, R. E., van Suylen, R. J., van Brakel, T. J., & Maessen, J. G. (2005). Post-mortem histologic evaluation of microwave lesions after epicardial pulmonary vein isolation for atrial fibrillation. Annals of Thoracic Surgery, 80, 881–887.

    Article  PubMed  Google Scholar 

  15. Abbate, A., Scarpa, S., Santini, D., Palleiro, J., Vasaturo, F., Miller, J., et al. (2006). Myocardial expression of survivin, an apoptosis inhibitor, in aging and heart failure. An experimental study in the spontaneously hypertensive rat. International Journal of Cardiology, 111, 371–376.

    Article  PubMed  Google Scholar 

  16. Li, M., Yu, C. M., Cheng, L., Wang, M., Gu, X., Lee, K. H., et al. (2006). Repair of infarcted myocardium by an extract of Geum japonicum with dual effects on angiogenesis and myogenesis. Clinical Chemistry, 52, 1460–1468.

    Article  CAS  PubMed  Google Scholar 

  17. Hobbs, B. A., Rolhall, T. G., Sprenkel, T. L., & Anthony, K. L. (1991). Comparisons of several combinations for anesthesia in rabbits. American Journal of Veterinary Research, 52, 669–674.

    CAS  PubMed  Google Scholar 

  18. Green, C. J., Knight, J., Precious, S., & Simpkin, S. (1981). Ketamine alone and combined with diazepam or xylazine in laboratory animals: A 10 year experience. Laboratory Animals, 15, 163–170.

    Article  CAS  PubMed  Google Scholar 

  19. Tropea, B. I., & Lee, R. C. (1992). Thermal injury kinetics in electrical trauma. Journal of Biomechanical Engineering, 114, 241–250.

    Article  CAS  PubMed  Google Scholar 

  20. Patterson, C., & Runge, M. S. (1999). Therapeutic angiogenesis: The new electrophysiology? Circulation, 99, 2614–2616.

    CAS  PubMed  Google Scholar 

  21. Linderman, J. R., Kloehn, M. R., & Greene, A. S. (2000). Development of an implantable muscle stimulator: Measurement of stimulated angiogenesis and post-stimulus vessel regression. Micricirculation, 7, 119–128.

    CAS  Google Scholar 

  22. Zhao, M., Bai, H., Wang, E., Forrester, J. V., & McCaig, C. D. (2004). Electrical stimulation directly induces pre-angiogenic responses in vascular endothelial cells by signaling through VEGF receptors. Journal of Cell Science, 26, 397–405.

    Google Scholar 

  23. Kano, S., Oda, N., Abe, M., Saito, S., Hori, K., Handa, Y., et al. (1999). Establishment of a simple and practical procedure applicable to therapeutic angiogenesis. Circulation, 99, 2682–2687.

    Google Scholar 

Download references

Acknowledgments

This study was funded by a grant from the National Natural Science Foundation (grant number 30470452). We thank the International Science Editing Ltd. (Ireland) for the language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Xiang He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, P., Liu, ZT., He, GX. et al. Low-Voltage Direct-Current Stimulation is Safe and Promotes Angiogenesis in Rabbits with Myocardial Infarction. Cell Biochem Biophys 59, 19–27 (2011). https://doi.org/10.1007/s12013-010-9107-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-010-9107-y

Keywords

Navigation