The Effect of Curcumin Nanoparticles on Cisplatin-Induced Cardiotoxicity in Male Wistar Albino Rats

Abstract

The cardiotoxicity of chemotherapeutic drugs as cisplatin has become a major issue in recent years. The present study investigates the efficacy of curcumin nanoparticles against the cardiotoxic effects of cisplatin by assessment of oxidative stress parameters, Na+,K+-ATPase, acetylcholinesterase (AchE) and tumor necrosis factor-alpha (TNF-α) in cardiac tissue in addition to serum lactate dehydrogenase (LDH). Rats were divided into three groups: control rats that received saline for 14 days; cisplatin-treated rats that received a single intraperitoneal (i.p.) injection of cisplatin (12 mg/kg) followed by a daily oral administration of saline (0.9%) for 14 days and rats treated with a single i.p. injection of cisplatin (12 mg/kg) followed by a daily oral administration of curcumin nanoparticles (50 mg/kg) for 14 days. Cisplatin resulted in a significant increase in lipid peroxidation, nitric oxide (NO), and TNF-α and a significant decrease in reduced glutathione (GSH) levels and Na+, K+- ATPase activity. Moreover, significant increases in cardiac AchE and serum lactate dehydrogenase activities were recorded. Treatment of cisplatin-injected animals with curcumin nanoparticles ameliorated all the alterations induced by cisplatin in the heart of rats. This suggests that curcumin nanoparticles can be used as an important therapeutic adjuvant in chemotherapeutic and other toxicities mediated by oxidative stress and inflammation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    van Laar, M., Fetbower, R. G., Gale, C. P., Bowen, D. T., Oliver, S. E., & Glaser, A. (2014). Cardiovascular sequelae in long-term survivors of young people’s cancer: A linked cohort study. British Journal of Cancer, 110, 1338–1341.

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Dasari, S., & Tchounwou, P. B. (2014). Cisplatin in cancer therapy: Molecular mechanisms of action. European Journal of Pharmacology, 740, 364–378.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Barabas, K., Milner, R., Lurie, D., & Adin, C. (2008). Cisplatin: A review of toxicities and therapeutic applications. Veterinary and Comparative Oncology, 6, 1–18.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Yao, X., Panichpisal, K., Kurtzman, N., & Nugent, K. (2007). Cisplatin nephrotoxicity: A review. American Journal of the Medical Sciences, 334(2), 115–124.

    Article  Google Scholar 

  5. 5.

    Guglin, M., Aljayeh, M., Saiyad, S., Ali, R., & Curtis, A. B. (2009). Introducing a new entity: Chemotherapy-induced arrhythmia. Europace, 11, 1579–1586.

    PubMed  Article  Google Scholar 

  6. 6.

    Ozcan, T., Cirit, A., & Kiykim, A. (2011). Recurrent complete atrioventricular block during cisplatin infusion: A case report. Journal of Clinical and Experimental Cardiology, 2, 151. https://doi.org/10.4172/2155-9880.1000151.

    CAS  Article  Google Scholar 

  7. 7.

    Yavas, O., Aytemir, K., & Celik, I. (2008). The prevalence of silent arrhythmia in patients receiving cisplatin-based chemotherapy. Turkish Journal of Cancer, 38, 12–15.

    Google Scholar 

  8. 8.

    Bano, N., Najam, R., & Qazi, F. (2013). Adverse cardiac manifestations of cisplatin—A review. International Journal of Pharmaceutical Sciences Review and Research, 18, 80–85.

    CAS  Google Scholar 

  9. 9.

    Amit, L., Ben-Aharon, I., Tichler, T., Inbar, E., Sulkes, A., & Stemmer, S. (2012). Cisplatin-induced posterior reversible encephalopathy syndrome—A brief report and review of the literature. Journal of Behavioral and Brain Science, 2, 97–101.

    CAS  Article  Google Scholar 

  10. 10.

    Ryberg, M. (2012). Recent advances in cardiotoxicity of anticancer therapies. American Society of Clinical Oncology Educational Book, 32(1), 555–559.

    Article  Google Scholar 

  11. 11.

    Wheate, N. J., Walker, S., Craig, G. E., & Oun, R. (2010). The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Transactions, 39, 8113–8127.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Zsengellér, Z. K., Ellezian, L., Brown, D., Horváth, B., Mukhopadhyay, P., Kalyanaraman, B., et al. (2012). Cisplatin nephrotoxicity involves mitochondrial injury with impaired tubular mitochondrial enzyme activity. Journal of Histochemistry and Cytochemistry, 60, 521–529.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  13. 13.

    Qian, W., Nishikawa, M., Haque, A. M., Hirose, M., Mashimo, M., Sato, E., & Inoue, M. (2005). Mitochondrial density determines the cellular sensitivity to cisplatin-induced cell death. American Journal of Physiology. Cell Physiology, 289(6), C1466–C1475.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Afsar, T., Razak, S., Almajwal, A., Shabbir, M., & Khan, M. R. (2019). Evaluating the protective potency of Acacia hydaspica R. Parker on histological and biochemical changes induced by Cisplatin in the cardiac tissue of rats. BMC Complementary Medicine and Therapies, 19(1), 182.

    Article  CAS  Google Scholar 

  15. 15.

    Rosic, G., Srejovic, I., Zivkovic, V., Selakovic, D., Joksimovic, J., & Jakovljevic, V. (2015). The effects of N-acetylcysteine on cisplatin-induced cardiotoxicity onisolated rat hearts after short-term global ischemia. Toxicology Reports, 2, 996–1006.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Rajsekhar, P. B., Arvind Bharani, R. S., Jini Angel, K., Ramachandran, M., & Rajsekhar, S. P. V. (2015). Curcumin nanoparticles: A therapeutic review. RJPBCS, 6, 1180–1185.

    CAS  Google Scholar 

  17. 17.

    Borra, S. K., Gurumurthy, P., & Mahendra, J. (2013). Antioxidant and free radical scavenging activity of curcumin determined by using different in vitro and ex vivo models. Journal of Medicinal Plants Research, 7(36), 2680–2690.

    CAS  Google Scholar 

  18. 18.

    Carvalhd, D. D., Takeuchi, K. P., Geraldine, R. M., de Mdura, C. J., & Tdrres, M. C. L. (2015). Production, solubility and antioxidant activity of curcumin nanosuspension. Food Science and Technology (Campinas), 35(1), 115–119.

    Article  Google Scholar 

  19. 19.

    Fadus, M. C., Lau, C., Bikhchandani, J., & Lynch, H. T. (2017). Curcumin: An age-old anti-inflammatory and anti-neoplastic agent. Journal of Traditional and Complementary Medicine, 7(3), 339–346.

    PubMed  Article  Google Scholar 

  20. 20.

    Bader, A. A., & Abdel Fattah, A. A. (2016). Antimicrobial activity of raw and nano turmeric powder extracts. Middle East Journal of Applied Sciences, 6(4), 787–796.

    Google Scholar 

  21. 21.

    Wang, J., Wang, H. Y., Zhu, R. R., Liu, Q., Fei, J., & Wang, S. L. (2015). Anti-inflammatory activity of curcumin-loadedsolid lipid nanoparticles in IL-1 beta transgenic mice subjected to the, lipopolysaccharide-induced sepsis. Biomaterials, 53, 475–483.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Zheng, Q. T., Yang, Z. H., Yu, L. Y., Ren, Y. Y., Huang, Q. X., Liu, Q., et al. (2017). Synthesis and antioxidant activity of curcumin analogs. Journal of Asian Natural Products Research, 19, 489–503.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Jankun, J., Wyganowska-Swiatkowska, M., Dettlaff, K., Jelinska, A., Surdacka, A., Watrobska-Swietlikowska, D., & Skrzypczak-Jankun, E. (2016). Determining whether curcumin degradation/condensation is actually bioactivation (review). International Journal of Molecular Medicine, 37, 1151–1158.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Adahoun, M. A., Al-Akhras, M. A. H., Jaafar, M. S., & Bououdina, M. (2017). Enhanced anti-cancer and antimicrobial activities of curcumin nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology, 45, 98–107.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Khayyal, M. T., El-Hazek, R. M., El-Sabbagh, W. A., Frank, J., Behnam, D., & Abdel-Tawab, M. (2018). Micellar solubilisation enhances the antiinflammatory activities of curcumin and boswellic acids in rats with adjuvant-induced arthritis. Nutrition, 54, 189–196.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Akbar, M. U., Zia, K. M., Nazir, A., Iqbal, J., Ejaz, S. A., & Akash, M. S. H. (2018). Pluronic-based mixed polymeric micelles enhance the therapeutic potential of curcumin. An Official Journal of the American Association of Pharmaceutical Scientists, 19, 2719–2739.

    CAS  Google Scholar 

  27. 27.

    Kakkar, V., Mishra, A. K., Chuttani, K., & Kaur, I. P. (2013). Proof of concept studies to confirm the delivery of curcumin loaded solid lipid nanoparticles (C-SLNs) to brain. International Journal of Pharmaceutics, 448, 354–359.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Sankar, P., Telang, A. G., Suresh, S., Kesavan, M., Kannan, K., Kalaivanan, R., & Sarkar, S. N. (2013). Immunomodulatory effects of nanocurcumin in arsenic-exposed rats. International Immunopharmacology, 17, 65–70.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Khadrawy, Y. A., El-Gizawy, M. M., Sorour, S. M., Sawie, H. G., & Hosny, E. N. (2019). Effect of curcumin nanoparticles on the cisplatin-induced neurotoxicity in rat. Drug and Chemical Toxicology, 42, 194–202.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Carlson, L. J., Cote, B., Alani, A. W., & Rao, D. A. (2014). Polymeric micellar codelivery of resveratrol and curcumin to mitigate in vitro doxorubicin-induced cardiotoxicity. Journal of Pharmaceutical Sciences, 103, 2315–2322.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Li, J., Gye, G. H., Chen, X., & Park, H. J. (2015). Modified curcumin with hyaluronic acid: Combination of pro-drug and nano-micelle strategy to address the curcumin challenge. Food Research International, 69, 202–208.

    CAS  Article  Google Scholar 

  32. 32.

    Ismaiel, A. A. M., El-Denshary, E. S., El-Nekkety, A. A., Al-Yamani, A. F., Gad, A. S., & Hassan, N. S. (2015). Ameliorative effects of curcumin nanoparticles on hepatotoxicity induced by Zearalenone Mycotoxin. Global Journal of Pharmacology, 9, 234–245.

    CAS  Google Scholar 

  33. 33.

    Abas, A. M. (2017). Evaluation of the protective effects of ginger extract on cisplatin induced cardiotoxicity in male albino rats. Journal of Chemical and Pharmaceutical Research, 9(2), 99–110.

    CAS  Google Scholar 

  34. 34.

    Ruiz-Larrea, M. B., Leal, A. M., Liza, M., Lacort, M., & de Groot, H. (1994). Antioxidant effects of estradiol and 2-hydroxyestradiol on iron-induced lipid peroxidation of rat liver microsomes. Steroids, 59, 383–388.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Montgomery, H. A. C., & Dymock, J. F. (1961). The determination of nitrite in water. Analyst, 86, 414–416.

    CAS  Google Scholar 

  36. 36.

    Beutler, E., Duron, O., & Kelly, B. M. (1963). Improved method for the determination of blood glutathione. Journal of Laboratory and Clinical Medicine, 61, 882–888.

    CAS  Google Scholar 

  37. 37.

    Ellman, G. L., Courtney, K. D., Andres, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88–95.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Gorun, V., Proinov, I., Baltescu, V., Balaban, G., & Barzu, O. (1978). Modified Ellman procedure for assay of cholinesterase in crude-enzymatic preparations. Analytical Biochemistry, 86, 324–326.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Tsakiris, S., Angelogianni, P., Schulpis, K. H., & Behrakis, P. (2000). Protective effect of l-cysteine and glutathione on rat brain Na+, K+ ATPase inhibition induced by free radicals. Zeitschrift für Naturforschung C, 55, 271–277.

    CAS  Article  Google Scholar 

  40. 40.

    Bais, R., & Philcox, M. (1994). Approved recommendation on IFCC methods for the measurement of catalytic concentration of enzymes. Part 8. IFCC method for lactate dehydrogenase (l-lactate: NAD+Oxidoreductase, EC 1.1.1.27). International Federation of Clinical Chemistry (IFCC). European Journal of Clinical Chemistry and Clinical Biochemistry, 32, 639–655.

    CAS  PubMed  Google Scholar 

  41. 41.

    Topal, İ, Bilgin, A. Ö., Çimen, F. K., Kurt, N., Süleyman, Z., Bilgin, Y., et al. (2018). The effect of rutin on cisplatin-induced oxidative cardiac damage in rats. The Anatolian Journal of Cardiology, 20, 136–142.

    CAS  PubMed  Google Scholar 

  42. 42.

    El-SE, E.-A., Moustafa, Y. M., Abo-Elmatty, D. M., & Radwan, A. (2011). Cisplatin-induced cardiotoxicity: Mechanisms and cardioprotective strategies. European Journal of Pharmacology, 650, 335–3341.

    Article  CAS  Google Scholar 

  43. 43.

    Lomeli, N., Di, K., Czerniawski, J., Guzowski, J. F., & Bota, D. A. (2017). Cisplatin-induced mitochondrial dysfunction is associated with impaired cognitive function in rats. Free Radical Biology and Medicine, 102, 274–286.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Dzagnidze, A., Katsarava, Z., Makhalova, J., Liedert, B., Yoon, M. S., Kaube, H., et al. (2007). Repair capacity for platinum-DNA adducts determines the severity of cisplatin-induced peripheral neuropathy. Journal of Neuroscience, 27, 9451–9457.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Wu, G., Fang, Y. Z., Yang, S., Lupton, J. R., & Turner, N. D. (2004). Glutathione metabolism and its implications for health. Journal of Nutrition, 134, 489–492.

    CAS  Article  Google Scholar 

  46. 46.

    Ferdinandy, P., & Schulz, R. (2003). Nitric oxide, superoxide, and peroxynitrite in myocardial ischaemia-reperfusion injury and preconditioning. British Journal of Pharmacology, 138, 532–543.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Fuller, W., Tulloch, L. B., Shattock, M. J., Calaghan, S. C., Howie, J., & Wypijewski, K. J. (2013). Regulation of the cardiac sodium pump. Cellular and Molecular Life Sciences, 70, 1357–1380.

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Bossuyt, J., Ai, X., Moorman, J. R., Pogwizd, S. M., & Bers, D. M. (2005). Expression and phosphorylation of the Na-pump regulatory subunit phospholemman in heart failure. Circulation Research, 97, 558–565.

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Workman, A. J., Kane, K. A., & Rankin, A. C. (2013). Characterisation of the Na, K pump current in atrial cells from patients with and without chronic atrial fibrillation. Cardiovascular Research, 59, 593–602.

    Article  CAS  Google Scholar 

  50. 50.

    Dostanic-Larson, I., van Huysse, J. W., Lorenz, J. N., & Lingrel, J. B. (2005). The highly conserved cardiac glycoside binding site of Na+, K+-ATPase plays a role in blood pressure regulation. Proceedings of the National academy of Sciences of the United States of America, 102, 15845–15850.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Fuller, W., Eaton, P., Bell, J. R., & Shattock, M. J. (2004). Ischemia-induced phosphorylation of phospholemman directly activates rat cardiac Na+/K+ ATPase. The FASEB Journal, 18, 197–199.

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Bibert, S., Liu, C. C., Figtree, G. A., Garcia, A., Hamilton, E. J., Marassi, F. M., et al. (2011). XYD proteins reverse inhibition of the Na+-K+ pump mediated by glutathionylation of its β1 subunit. Journal of Biological Chemistry, 286, 18562–18572.

    CAS  Article  Google Scholar 

  53. 53.

    Reifenberger, M. S., Arnett, K. L., Gatto, C., & Milanick, M. A. (2008). The reactive nitrogen species peroxynitrite is a potent inhibitor of renal Na+-K+-ATPase activity. American Journal of Physiology. Renal Physiology, 295, F1191-1198.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Xi, H. J., Wu, R. P., Liu, J. J., Zhang, L. J., & Li, Z. S. (2015). Role of acetylcholinesterase in lung cancer. Thoracic Cancer, 6(4), 390–398.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Sperling, L. E., Steinert, G., Boutter, J., Landgraf, D., Hescheler, J., Pollet, D., & Layer, P. G. (2008). Characterisation of cholinesterase expression during murine embryonic stem cell differentiation. Chemico-Biological Interactions, 175, 156–160.

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Park, S. E., & Yoo, Y. H. (2010). Acetylcholinesterase as a pharmacological target in cancer research. In F. Cecconi & M. D’Amelio (Eds.), Apoptosome: An up-and-coming therapeutical tool (pp. 221–236). Dordrecht: Springer.

    Google Scholar 

  57. 57.

    Olofsson, P. S., Rosas-Ballina, M., Levine, Y. A., & Tracey, K. J. (2012). Rethinking inflammation: Neural circuits in the regulation of immunity. Immunological Reviews, 248, 188–204.

    PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Adamy, C., Le Corvoisier, P., Candiani, G., Kirsch, M., Pavoine, C., Defer, N., et al. (2005). Tumor necrosis factor alpha and glutathione interplay in chronic heart failure. Archives des Maladies du Coeur et des Vaisseaux, 98, 906–912.

    CAS  PubMed  Google Scholar 

  59. 59.

    Ping, Z., Aiqun, M., Jiwu, L., & Liang, S. (2017). TNF receptor 1/2 predict heart failure risk in type 2 diabetes mellitus patients. International Heart Journal, 58, 245–249.

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Staal, F. J., Roederer, M., & Herzenberg, L. A. (1990). Intracellular thiols regulate activation of nuclear factor kappa B and transcription of human immunodeficiency virus. Proceedings of the National academy of Sciences of the United States of America, 87, 9943–9947.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Haddad, J. J. (2002). Redox regulation of pro-inflammatory cytokines and IkappaB-alpha/NF-kappaB nuclear translocation and activation. Biochemical and Biophysical Research Communications, 296, 847–856.

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Anand, P., Kunnukakkara, A. B., Newman, R. A., & Aggarwal, B. B. (2007). Bioavailability of curcumin: Problems and promises. Molecular Pharmaceutics, 4, 807–818.

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Ravichandran, R. (2013). Pharmacokinetic study of nanoparticulate curcumin: Oral formulation for enhanced bioavailability. JBNB, 4, 291–299.

    Article  Google Scholar 

  64. 64.

    Ma, Z., Shayeganpour, A., Brocks, D. R., Lavasanifar, A., & Samuel, J. (2007). High-performance liquid chromatography analysis of curcuminin rat plasma: Application to pharmacokinetics of polymeric micellar formulation of curcumin. Biomedical Chromatography, 21, 546–552.

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Flora, G., Gupta, D., & Tiwari, A. (2013). Nanocurcumin: A promising therapeutic advancement over native curcumin. Critical Reviews in Therapeutic Drug Carrier Systems, 30, 331–368.

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Nehra, S., Bhardwaj, V., Kalra, N., Ganju, L., Bansal, A., Saxena, S., & Saraswat, D. (2015). Nanocurcumin protects cardiomyoblasts H9c2 from hypoxia-induced hypertrophy and apoptosis by improving oxidative balance. Journal of Physiology and Biochemistry, 71, 239–251.

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Tyagi, P., Singh, M., Kumari, H., Kumari, A., & Mukhopadhyay, K. (2015). Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PLoS ONE, 10, e0121313.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  68. 68.

    Abo-Salem, O. M., Harisa, G. I., Ali, T. M., El-Sayed, S. M., & Abou-Elnour, F. M. (2014). Curcumin ameliorates streptozotocin-induced heart injury in rats. Journal of Biochemical and Molecular Toxicology, 28, 263–270.

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Rahmi, D. N. I., Louisa, M., & Soetikno, V. (2018). Effects of curcumin and nanocurcumin on cisplatin-induced nephrotoxicity in rat: Copper transporter 1 and organic cation transporter 2 as drug transporters. International Journal of Applied Pharmaceutics, 10, 172–174.

    CAS  Article  Google Scholar 

  70. 70.

    Lestari, M. L., & Indrayanto, G. (2014). Curcumin. Profiles of Drug Substances, Excipients and Related Methodology, 39, 113–204.

    CAS  Article  Google Scholar 

  71. 71.

    Setyono, J., Harini, I. M., Sarmoko, S., & Rujito, L. (2019). Supplementation of curcuma domestica extract reduces cox-2 and inos expression on raw 2647 cells. Journal of Physics: Conference Series, 1246, 012059.

    CAS  Google Scholar 

  72. 72.

    Singh, P., Kesharwani, R. K., Misra, K., & Rizvi, S. I. (2015). The modulation of erythrocyte Na+/K+-ATPaseactivity by curcumin. Journal of Advanced Research, 6, 1023–1030.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. 73.

    Orhan, I. E. (2013). Nature: A substantial source of auspicious substances with acetylcholinesterase inhibitory action. Current Neuropharmacology, 11, 379–387.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. 74.

    Tiwari, V., & Chopra, K. (2013). Protective effect of curcumin against chronic alcohol-induced cognitive deficits and neuroinflammation in the adult rat brain. Neuroscience, 6, 147–158.

    Article  CAS  Google Scholar 

  75. 75.

    Yuan, J., Liu, R., Ma, Y., Zhang, Z., & Xie, Z. (2018). Curcumin attenuates airway inflammation and airway remolding by inhibiting NF-kB signaling and COX-2 in cigarette smoke-induced COPD mice. Inflammation, 41, 1804–1814.

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Rocha, B. A., Gonçalves, O. H., Leimann, F. V., Rebecca, E. S. W., Silva-Buzanello, R. A., Filho, L. C., et al. (2014). Curcumin encapsulated in poly-L-lactic acid improves its anti-inflammatory efficacy in vivo. Advancement in Medicinal Plant Research, 2(4), 62–73.

    Google Scholar 

  77. 77.

    Ghandadi, M., & Sahebkar, A. (2017). Curcumin: An effective inhibitor of interleukin-6. Current Pharmaceutical Design, 23, 921–931.

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Pan, Y., Zhao, D., Yu, N., An, T., Miao, J., Mo, F., et al. (2017). Curcumin improves glycolipid metabolism through regulating peroxisome proliferator activated receptor γ signalling pathway in high-fat diet-induced obese mice and 3T3-L1 adipocytes. Royal Society Open Science, 4, 170917.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

Download references

Funding

No funding was obtained.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yasser A. Khadrawy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

Animal procedures were approved by the Institutional Animal Care and Use Committee of Cairo University, Faculty of Science (IACUC) (Egypt), (CU/I/F/42/19).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Y. Robert Li.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khadrawy, Y.A., Hosny, E.N., El-Gizawy, M.M. et al. The Effect of Curcumin Nanoparticles on Cisplatin-Induced Cardiotoxicity in Male Wistar Albino Rats. Cardiovasc Toxicol (2021). https://doi.org/10.1007/s12012-021-09636-3

Download citation

Keywords

  • Cisplatin
  • Cardiotoxicity
  • Curcumin nanoparticles
  • Oxidative stress
  • TNF-α