miR-362-3p Targets Orosomucoid 1 to Promote Cell Proliferation, Restrain Cell Apoptosis and Thereby Mitigate Hypoxia/Reoxygenation-Induced Cardiomyocytes Injury

Abstract

This study aimed to investigate the mechanism of how miR-362-3p/orosomucoid 1 (ORM1) involved in hypoxia/reoxygenation (H/R)-induced cardiomyocytes injury. Based on data obtained from Gene Expression Omnibus (GEO) database, we revealed that ORM1 was highly expressed and positively correlated with the expression of inflammatory factors (MAPK1, MAPK3, IL1B and CASP9). miR-362-3p was identified as an upstream regulatory miRNA of ORM1 and negatively modulated the mRNA and protein expression levels of ORM1 in H/R-injured cardiomyocytes. Moreover, we found that miR-362-3p was downregulated in cardiomyocytes injured by H/R. The promoting influence of miR-362-3p mimic on the proliferation and the inhibitory effect of miR-362-3p mimic on the apoptosis of H/R-stimulated cardiomyocytes were eliminated by overexpression of ORM1. Furthermore, miR-362-3p affected the expression of MAPK1, MAPK3, IL1B and CASP9 in H/R-injured cardiomyocytes through targeting ORM1. Our outcomes illustrated that miR-362-3p exhibited a protective influence on H/R-induced cardiomyocytes through targeting ORM1.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability

The data and material are available from the corresponding author on reasonable request.

Abbreviations

ORM1:

Orosomucoid 1

miR-362-3p:

MicroRNA-362-3p

AMI:

Acute myocardial infarction

H/R:

Hypoxia/reoxygenation

WHO:

World Health Organization

CVD:

Cardiovascular disease

MiRNAs:

MicroRNAs

MAPK1/3:

Mitogen-activated protein kinase 1/3

ERKs:

MAP kinase

References

  1. 1.

    Mendis, S. (2017). Global progress in prevention of cardiovascular disease. Cardiovasc Diagn Ther, 7(Suppl 1), S32–S38.

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Almamari, R. S. S., Muliira, J. K., & Lazarus, E. R. (2019). Self-reported sleep quality and depression in post myocardial infarction patients attending cardiology outpatient clinics in Oman. Int J Nurs Sci, 6(4), 371–377.

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Cong, X. Q., et al. (2015). Short-Term Effect of Autologous Bone Marrow Stem Cells to Treat Acute Myocardial Infarction: A Meta-Analysis of Randomized Controlled Clinical Trials. J Cardiovasc Transl Res, 8(4), 221–231.

    PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Shinde, A. V., & Frangogiannis, N. G. (2014). Fibroblasts in myocardial infarction: a role in inflammation and repair. Journal of Molecular and Cellular Cardiology, 70, 74–82.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Eghbalzadeh, K., et al. (2019). Compromised Anti-inflammatory Action of Neutrophil Extracellular Traps in PAD4-Deficient Mice Contributes to Aggravated Acute Inflammation After Myocardial Infarction. Front Immunol, 10, 2313.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Ceciliani, F., et al. (2012). Acute phase proteins in ruminants. J Proteomics, 75(14), 4207–4231.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Li, F., et al. (2016). The increased excretion of urinary orosomucoid 1 as a useful biomarker for bladder cancer. American Journal of Cancer Research, 6(2), 331–340.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Chihara, D., et al. (2016). Management strategies and outcomes for very elderly patients with diffuse large B-cell lymphoma. Cancer, 122(20), 3145–3151.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    McGuckin, M. M., et al. (2020). The acute phase protein orosomucoid 1 is upregulated in early lactation but does not trigger appetite-suppressing STAT3 signaling via the leptin receptor. Journal of Dairy Science, 103(5), 4765–4776.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Sai, K., et al. (2014). Distal promoter regions are responsible for differential regulation of human orosomucoid-1 and -2 gene expression and acute phase responses. Biological &/and Pharmaceutical Bulletin, 37(1), 164–168.

    CAS  Google Scholar 

  11. 11.

    Chen, W. Q., et al. (2013). Polymorphism of ORM1 is associated with the pharmacokinetics of telmisartan. PLoS ONE, 8(8), e70341.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Zhou, Z., et al. (2016). S100A9 and ORM1 serve as predictors of therapeutic response and prognostic factors in advanced extranodal NK/T cell lymphoma patients treated with pegaspargase/gemcitabine. Sci Rep, 6, 23695.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Giovanni, L., et al. (2012). The Acute Phase Reactant Orosomucoid-1 Is a Bimodal Regulator of Angiogenesis with Time- and Context-Dependent Inhibitory and Stimulatory Properties. PLoS ONE. https://doi.org/10.1371/journal.pone.0041387.

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Cai, L., et al. (2016). ORMDL proteins regulate ceramide levels during sterile inflammation. Journal of Lipid Research, 57(8), 1412–1422.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Lee, E. G., et al. (2016). Tolerogenic dendritic cells show gene expression profiles that are different from those of immunogenic dendritic cells in DBA/1 mice. Autoimmunity, 49(2), 90–101.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Astrup, L. B., et al. (2019). Staphylococcus aureus infected embolic stroke upregulates Orm1 and Cxcl2 in a rat model of septic stroke pathology. Neurological Research, 41(5), 399–412.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Paraskevi, A., et al. (2012). Circulating MicroRNA in inflammatory bowel disease. Journal of Crohn’s and Colitis, 6(9), 900–904.

    PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Jiang, Z. H., et al. (2019). miRNA342 suppresses renal interstitial fibrosis in diabetic nephropathy by targeting SOX6. International Jouney of Molecular Medicine. https://doi.org/10.3892/ijmm.2019.4388.

    Article  Google Scholar 

  19. 19.

    Sun, T., et al. (2017). The Role of MicroRNAs in Myocardial Infarction: From Molecular Mechanism to Clinical Application. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms18040745.

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Zhang, J., et al. (2019). Upregulating MicroRNA-203 Alleviates Myocardial Remodeling and Cell Apoptosis Through Downregulating Protein Tyrosine Phosphatase 1B in Rats With Myocardial Infarction. Journal of Cardiovascular Pharmacology, 74(5), 474–481.

    CAS  PubMed  Google Scholar 

  21. 21.

    Boon, R. A., & Dimmeler, S. (2015). MicroRNAs in myocardial infarction. Nat Rev Cardiol, 12(3), 135–142.

    CAS  PubMed  Google Scholar 

  22. 22.

    Mirna, M., et al. (2019). MicroRNAs in Inflammatory Heart Diseases and Sepsis-Induced Cardiac Dysfunction: A Potential Scope for the Future? Cells. https://doi.org/10.3390/cells8111352.

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Wang, N., et al. (2018). miR-362-3p regulates cell proliferation, migration and invasion of trophoblastic cells under hypoxia through targeting Pax3. Biomedicine & Pharmacotherapy, 99, 462–468.

    CAS  Google Scholar 

  24. 24.

    Assiri, A. A., et al. (2019). MicroRNA 362–3p Reduces hERG-related Current and Inhibits Breast Cancer Cells Proliferation. Cancer Genomics & Proteomics, 16(6), 433–442.

    CAS  Google Scholar 

  25. 25.

    Omidbakhsh, A., et al. (2018). Micro-RNAs -106a and -362-3p in Peripheral Blood of Inflammatory Bowel Disease Patients. Open Biochemistry Journal, 12, 78–86.

    CAS  Google Scholar 

  26. 26.

    Zhang, H. J., Zhang, Y. N., & Teng, Z. Y. (2019). Downregulation of miR-16 protects H9c2(2–1) cells against hypoxia/reoxygenation damage by targeting CIAPIN1 and regulating the NF-κB pathway. Mol Med Rep, 20(4), 3113–3122.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Liu, D. Z., et al. (2010). Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. Journal of Cerebral Blood Flow and Metabolism, 30(1), 92–101.

    PubMed  Google Scholar 

  28. 28.

    Kiss, A., et al. (2020). MicroRNA Expression Profile Changes after Cardiopulmonary Bypass and Ischemia/Reperfusion-Injury in a Porcine Model of Cardioplegic Arrest. Diagnostics (Basel). https://doi.org/10.3390/diagnostics10040240.

    Article  Google Scholar 

  29. 29.

    Díaz, I., et al. (2017). miR-125a, miR-139 and miR-324 contribute to Urocortin protection against myocardial ischemia-reperfusion injury. Scientific Reports. https://doi.org/10.1038/s41598-017-09198-x.

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Africander, D., Louw, R., & Hapgood, J. P. (2013). Investigating the anti-mineralocorticoid properties of synthetic progestins used in hormone therapy. Biochemical and Biophysical Research Communications, 433(3), 305–310.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Wan, J. J., et al. (2019). Role of acute-phase protein ORM in a mice model of ischemic stroke. Journal of Cellular Physiology, 234(11), 20533–20545.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Nemeth, B., et al. (2019). Urinary orosomucoid: a new marker of cardiovascular risk in psoriatic patients? Therapeutics and Clinical Risk Management, 15, 831–837.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Araszkiewicz, A., et al. (2013). The impact of ischemia-reperfusion injury on the effectiveness of primary angioplasty in ST-segment elevation myocardial infarction. Postepy Kardiol Interwencyjnej, 9(3), 275–281.

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Chen, Q., et al. (2016). Up-regulation of miRNA-221 inhibits hypoxia/reoxygenation-induced autophagy through the DDIT4/mTORC1 and Tp53inp1/p62 pathways. Biochemical and Biophysical Research Communications, 474(1), 168–174.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Fan, Z. X., & Yang, J. (2015). The role of microRNAs in regulating myocardial ischemia reperfusion injury. Saudi Medical Journal, 36(7), 787–793.

    PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Ren, X. P., et al. (2009). MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation, 119(17), 2357–2366.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Liang, Y. P., et al. (2019). The lncRNA ROR/miR-124–3p/TRAF6 axis regulated the ischaemia reperfusion injury-induced inflammatory response in human cardiac myocytes. Journal of Bioenergetics and Biomembranes. https://doi.org/10.1007/s10863-019-09812-9.

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Qian, W., et al. (2014). Protective effect of tetramethylpyrazine on myocardial ischemia-reperfusion injury. Evid Based Complement Alternat Med, 2014, 107501.

    PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Liu, J. Y., et al. (2019). Protective effect of down-regulated microRNA-27a mediating high thoracic epidural block on myocardial ischemia-reperfusion injury in mice through regulating ABCA1 and NF-kappaB signaling pathway. Biomedicine & Pharmacotherapy, 112, 108606.

    CAS  Article  Google Scholar 

  40. 40.

    Sun, W., et al. (2019). Gastrodin ameliorates microvascular reperfusion injury-induced pyroptosis by regulating the NLRP3/caspase-1 pathway. J Physiol Biochem. https://doi.org/10.1007/s13105-019-00702-7.

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Stein, J. M., et al. (2009). The role of the composite interleukin-1 genotype in the association between periodontitis and acute myocardial infarction. Journal of Periodontology, 80(7), 1095–1102.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Chen, D.-Q., et al. (2019). Identification of Differentially Expressed Genes and Signaling Pathways in Acute Myocardial Infarction Based on Integrated Bioinformatics Analysis. Cardiovascular therapeutics, 2019, 8490707–8490707.

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Jablonski, K. A., et al. (2016). Control of the Inflammatory Macrophage Transcriptional Signature by miR-155. PLoS ONE, 11(7), e0159724.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  44. 44.

    Wu, L. K., et al. (2016). High levels of glucose promote the activation of hepatic stellate cells via the p38-mitogen-activated protein kinase signal pathway. Genetics and molecular research : GMR. https://doi.org/10.4238/gmr.15038419.

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Jung, Y.-C., et al. (2016). Kazinol-E is a specific inhibitor of ERK that suppresses the enrichment of a breast cancer stem-like cell population. Biochemical and biophysical research communications, 470(2), 294–299.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Li, X., et al. (2017). Down-regulation of lncRNA KCNQ1OT1 protects against myocardial ischemia/reperfusion injury following acute myocardial infarction. Biochemical and biophysical research communications, 491(4), 1026–1033.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Chen, Y., et al. (2017). Role of carvacrol in cardioprotection against myocardial ischemia/reperfusion injury in rats through activation of MAPK/ERK and Akt/eNOS signaling pathways. European journal of pharmacology, 796, 90–100.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Choi, Y. W., et al. (2016). MicroRNA Expression Signatures Associated With BRAF-Mutated Versus KRAS-Mutated Colorectal Cancers. Medicine (Baltimore), 95(15), e3321.

    CAS  Article  Google Scholar 

  49. 49.

    Hao, Y.-L., et al. (2018). The role of microRNA-1 targeting of MAPK3 in myocardial ischemia-reperfusion injury in rats undergoing sevoflurane preconditioning via the PI3K/Akt pathway. American journal of physiology. Cell physiology, 315(3), C380–C388.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    He, B., et al. (2011). Role of miR-1 and miR-133a in myocardial ischemic postconditioning. Journal of Biomedical Science, 18, 22.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Ligresti, G., et al. (2012). The acute phase reactant orosomucoid-1 is a bimodal regulator of angiogenesis with time- and context-dependent inhibitory and stimulatory properties. PLoS ONE, 7(8), e41387.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Not applicable.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yi Dang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Dipak K Dube.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (docx 15 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, M., Ma, X., Yang, Q. et al. miR-362-3p Targets Orosomucoid 1 to Promote Cell Proliferation, Restrain Cell Apoptosis and Thereby Mitigate Hypoxia/Reoxygenation-Induced Cardiomyocytes Injury. Cardiovasc Toxicol (2021). https://doi.org/10.1007/s12012-020-09631-0

Download citation

Keywords

  • Apoptosis
  • Biomarker
  • Inflammatory factors
  • miR-362-3p
  • Orosomucoid 1