Cardiovascular Toxicology

, Volume 18, Issue 5, pp 431–435 | Cite as

Cardiotoxicity in Hematological Diseases: Are the Tyrosine Kinase Inhibitors Imatinib and Nilotinib Safe?

  • Ana Rita G. Francisco
  • Daniela Alves
  • Cláudio David
  • Lurdes Guerra
  • Fausto J. Pinto
  • Ana G. Almeida


Chemotherapy-induced cardiotoxicity is a growing concern. The cardiotoxic impact of new drugs such as tyrosine kinase inhibitors is unknown, especially the ones used for chronic myeloid leukemia. We aim to evaluate nilotinib- and imatinib-induced cardiotoxicity. Single-center prospective study of consecutive patients with chronic myeloid leukemia treated with tyrosine kinase inhibitors was conducted during 2015. Patients underwent an initial clinical, laboratorial and echocardiographic evaluation, repeated after 1 year. Eleven patients were included [60.0 (11) years, 63.6% of males; seven patients treated with imatinib and four with nilotinib]. After 1 year of follow-up, all patients remained in functional NYHA class I, with a similar Minnesota quality of life score. Also there was no difference in the biomarkers evaluated (cystatin-C and NT-proBNP). Likewise, no modification in systolic or diastolic function evaluated by echocardiography was observed. All patients presented normal values of longitudinal, circumferential and radial strain in the baseline study, without changes during follow-up. In addition, there were no differences between the two tyrosine kinase inhibitors used, considering all the aforementioned variables. No clinical, laboratory or echocardiographic evidence of nilotinib- and imatinib-induced cardiotoxicity was observed. However, these results should be confirmed in multicenter studies given the low incidence of chronic myeloid leukemia.


Cardio-oncology Cancer chemotherapy Chronic myeloid leukemia Echocardiographic evaluation of cardiac function Biomarkers 


Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Yang, B., & Papoian, T. (2012). Tyrosine kinase inhibitor (TKI) induced cardiotoxicity: Approaches to narrow the gaps between preclinical safety evaluation and clinical outcome. Journal of Applied Toxicology, 32(12), 945–951.CrossRefPubMedGoogle Scholar
  2. 2.
    Volkova, M., & Russell, R. (2011). Anthracycline cardiotoxicity: Prevalence, pathogenesis and treatment. Current Cardiology Reviews, 7(4), 214–220.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Nemeth, B. T., Varga, Z. V., Wu, W. J., & Pacher, P. (2017). Trastuzumab cardiotoxicity: From clinical trials to experimental studies. British Journal of Pharmacology, 174(21), 3727–3748.CrossRefPubMedGoogle Scholar
  4. 4.
    Groarke, J. D., Nguyen, P. L., Nohria, A., Ferrari, R., Cheng, S., & Moslehi, J. (2014). Cardiovascular complications of radiation therapy for thoracic malignancies: The role for non-invasive imaging for detection of cardiovascular disease. European Heart Journal, 35(10), 612–623.CrossRefPubMedGoogle Scholar
  5. 5.
    Krause, D. S., & Van Etten, R. A. (2005). Tyrosine kinases as targets for cancer therapy. New England Journal of Medicine, 353(2), 172–187.CrossRefPubMedGoogle Scholar
  6. 6.
    Zhang, J., Yang, P. L., & Gray, N. S. (2009). Targeting cancer with small molecule kinase inhibitors. Nature Reviews Cancer, 9(1), 28–39.CrossRefPubMedGoogle Scholar
  7. 7.
    Hartmann, J. T., Haap, M., Kopp, H.-G., & Lipp, H.-P. (2009). Tyrosine kinase inhibitors—A review on pharmacology, metabolism and side effects. Current Drug Metabolism, 10(5), 470–481.CrossRefPubMedGoogle Scholar
  8. 8.
    Zamorano, J. L., Lancellotti, P., Rodriguez Munoz, D., Aboyans, V., Asteggiano, R., Galderisi, M., et al. (2016). ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines. European Heart Journal, 37(36), 2768–2801.CrossRefPubMedGoogle Scholar
  9. 9.
    Heath, E. I., Infante, J., Lewis, L. D., Luu, T., Stephenson, J., Tan, A. R., et al. (2013). A randomized, double-blind, placebo-controlled study to evaluate the effect of repeated oral doses of pazopanib on cardiac conduction in patients with solid tumors. Cancer Chemotherapy and Pharmacology, 71(3), 565–573.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Chu, T. F., Rupnick, M. A., Kerkela, R., Dallabrida, S. M., Zurakowski, D., Nguyen, L., et al. (2007). Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet, 370(9604), 2011–2019.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Abdel-Rahman, O., & Fouad, M. (2014). Risk of cardiovascular toxicities in patients with solid tumors treated with sorafenib: An updated systematic review and meta-analysis. Future Oncol, 10(12), 1981–1992.CrossRefPubMedGoogle Scholar
  12. 12.
    Force, T., Krause, D. S., & Van Etten, R. A. (2007). Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nature Reviews Cancer, 7(5), 332–344.CrossRefPubMedGoogle Scholar
  13. 13.
    Chen, M. H., Kerkelä, R., & Force, T. (2008). Mechanisms of cardiac dysfunction associated with tyrosine kinase inhibitor cancer therapeutics. Circulation, 118(1), 84–95.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Moen, M. D., McKeage, K., Plosker, G. L., & Siddiqui, M. A. A. (2007). Imatinib: A review of its use in chronic myeloid leukaemia. Drugs, 67(2), 299–320.CrossRefPubMedGoogle Scholar
  15. 15.
    Keskin, D., Sadri, S., & Eskazan, A. E. (2016). Dasatinib for the treatment of chronic myeloid leukemia: Patient selection and special considerations. Drug Design, Development and Therapy, 10, 3355–3361.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Emole, J., Talabi, T., & Pinilla-Ibarz, J. (2016). Update on the management of Philadelphia chromosome positive chronic myelogenous leukemia: Role of nilotinib. Biologics, 10, 23–31.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Jemal, A., Siegel, R., Ward, E., Murray, T., Xu, J., Smigal, C., et al. (2016). Cancer statistics, 2006. CA: A Cancer Journal for Clinicians, 56(2), 106–130.Google Scholar
  18. 18.
    Lang, R. M., Badano, L. P., Mor-Avi, V., Afilalo, J., Armstrong, A., Ernande, L., et al. (2016). Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of, Cardiovascular Imaging. European Heart Journal: Cardiovascular Imaging, 17(4), 412.Google Scholar
  19. 19.
    Kleijn, S. A., Pandian, N. G., Thomas, J. D., Perez de Isla, L., Kamp, O., Zuber, M., et al. (2015). Normal reference values of left ventricular strain using three-dimensional speckle tracking echocardiography: Results from a multicentre study. European Heart Journal: Cardiovascular Imaging, 16(4), 410–416.PubMedGoogle Scholar
  20. 20.
    Kerkelä, R., Grazette, L., Yacobi, R., Iliescu, C., Patten, R., Beahm, C., et al. (2006). Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nature Medicine, 12(8), 908–916.CrossRefPubMedGoogle Scholar
  21. 21.
    Wolf, A., Couttet, P., Dong, M., Grenet, O., Heron, M., Junker, U., et al. (2010). Imatinib does not induce cardiotoxicity at clinically relevant concentrations in preclinical studies. Leukemia Research, 34(9), 1180–1188.CrossRefPubMedGoogle Scholar
  22. 22.
    Herman, E. H., Knapton, A., Rosen, E., Thompson, K., Rosenzweig, B., Estis, J., et al. (2011). A multifaceted evaluation of imatinib-induced cardiotoxicity in the rat. Toxicologic Pathology, 39(7), 1091–1106.CrossRefPubMedGoogle Scholar
  23. 23.
    Kaya, Z., & Karanfil, M. (2012). Assessment of left ventricular systolic and diastolic function with conventional and tissue Doppler echocardiography imaging techniques in patients administered tyrosine kinase inhibitor. Turk Kardiyol Dern Arş, 40(7), 597–605.CrossRefPubMedGoogle Scholar
  24. 24.
    Verstovsek, S., Golemovic, M., Kantarjian, H., Manshouri, T., Estrov, Z., Manley, P., et al. (2005). AMN107, a novel aminopyrimidine inhibitor of p190 Bcr-Abl activation and of in vitro proliferation of Philadelphia-positive acute lymphoblastic leukemia cells. Cancer, 104(6), 1230–1236.CrossRefPubMedGoogle Scholar
  25. 25.
    Tiwari, A. K., Sodani, K., Wang, S. R., Kuang, Y. H., Ashby, C. R., Jr., Chen, X., et al. (2009). Nilotinib (AMN107, Tasigna) reverses multidrug resistance by inhibiting the activity of the ABCB1/Pgp and ABCG2/BCRP/MXR transporters. Biochemical Pharmacology, 78(2), 153–161.CrossRefPubMedGoogle Scholar
  26. 26.
    Nilotinib, T., Dan, H., Jin, L., & Cheng, L. (2016). Nilotinib reverses ABCB1/P-glycoprotein-mediated multidrug resistance but increases cardiotoxicity of doxorubicin in a MDR xenograft model. Toxicology Letters, 30(259), 124–132.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Cardiology Department, Faculty of Medicine, Santa Maria University Hospital (CHLN)Lisbon Academic Medical Centre and Cardiovascular Centre of the University of LisbonLisbonPortugal
  2. 2.Hematology Department, Faculty of MedicineSanta Maria University Hospital (CHLN)LisbonPortugal

Personalised recommendations