Skip to main content

Advertisement

Log in

Methylene Blue Counteracts H2S-Induced Cardiac Ion Channel Dysfunction and ATP Reduction

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

We have previously demonstrated that methylene blue (MB) counteracts the effects of hydrogen sulfide (H2S) cardiotoxicity by improving cardiomyocyte contractility and intracellular Ca2+ homeostasis disrupted by H2S poisoning. In vivo, MB restores cardiac contractility severely depressed by sulfide and protects against arrhythmias, ranging from bundle branch block to ventricular tachycardia or fibrillation. To dissect the cellular mechanisms by which MB reduces arrhythmogenesis and improves bioenergetics in myocytes intoxicated with H2S, we evaluated the effects of H2S on resting membrane potential (Em), action potential (AP), Na+/Ca2+ exchange current (INaCa), depolarization-activated K+ currents and ATP levels in adult mouse cardiac myocytes and determined whether MB could counteract the toxic effects of H2S on myocyte electrophysiology and ATP. Exposure to toxic concentrations of H2S (100 µM) significantly depolarized Em, reduced AP amplitude, prolonged AP duration at 90% repolarization (APD90), suppressed INaCa and depolarization-activated K+ currents, and reduced ATP levels in adult mouse cardiac myocytes. Treating cardiomyocytes with MB (20 µg/ml) 3 min after H2S exposure restored Em, APD90, INaCa, depolarization-activated K+ currents, and ATP levels toward normal. MB improved mitochondrial membrane potential (∆ψm) and oxygen consumption rate in myocytes in which Complex I was blocked by rotenone. We conclude that MB ameliorated H2S-induced cardiomyocyte toxicity at multiple levels: (1) reversing excitation–contraction coupling defects (Ca2+ homeostasis and L-type Ca2+ channels); (2) reducing risks of arrhythmias (Em, APD, INaCa and depolarization-activated K+ currents); and (3) improving cellular bioenergetics (ATP, ∆ψm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Almeida, A. F., & Guidotti, T. L. (1999). Differential sensitivity of lung and brain to sulfide exposure: A peripheral mechanism for apnea. Toxicological Sciences, 50, 287–293.

    Article  PubMed  CAS  Google Scholar 

  2. Almgren, T., Dyrssen, D., Elgquist, B., & Johannsson, O. (1976). Dissociation of hydrogen sulfide in seawater and comparison of pH scales. Marine Chemistry, 4, 289–297.

    Article  CAS  Google Scholar 

  3. Arnold, I. M., Dufresne, R. M., Alleyne, B. C., & Stuart, P. J. (1985). Health implication of occupational exposures to hydrogen sulfide. Journal of Occupational Medicine, 27, 373–376.

    Article  PubMed  CAS  Google Scholar 

  4. Ash-Bernal, R., Wise, R., & Wright, S. M. (2004). Acquired methemoglobinemia: A retrospective series of 138 cases at 2 teaching hospitals. Medicine (Baltimore), 83, 265–273.

    Article  Google Scholar 

  5. Astier, A., & Baud, F. J. (1996). Complexation of intracellular cyanide by hydroxocobalamin using a human cellular model. Human and Experimental Toxicology, 15, 19–25.

    Article  PubMed  CAS  Google Scholar 

  6. Baldelli, R. J., Green, F. H., & Auer, R. N. (1993). Sulfide toxicity: Mechanical ventilation and hypotension determine survival rate and brain necrosis. Journal of Applied Physiology, 75, 1348–1353.

    Article  PubMed  CAS  Google Scholar 

  7. Barrett, T. J., Anderson, G. M., & Lugowski, J. T. (1988). The solubility of hydrogen sulphide in 0–5 m NaCl solutions at 25–95 C and one atmosphere. Geochimica et Cosmochimica Acta, 52, 807–811.

    Article  CAS  Google Scholar 

  8. Beauchamp, R. O., Jr., Bus, J. S., Popp, J. A., Boreiko, C. J., & Andjelkovich, D. A. (1984). A critical review of the literature on hydrogen sulfide toxicity. Critical Reviews in Toxicology, 13, 25–97.

    Article  PubMed  CAS  Google Scholar 

  9. Bers, D. M. (2002). Cardiac excitation-contraction coupling. Nature, 415, 198–205.

    Article  PubMed  CAS  Google Scholar 

  10. Bitterman, N., Talmi, Y., Lerman, A., Melamed, Y., & Taitelman, U. (1986). The effect of hyperbaric oxygen on acute experimental sulfide poisoning in the rat. Toxicology and Applied Pharmacology, 84, 325–328.

    Article  PubMed  CAS  Google Scholar 

  11. Bott, E., & Dodd, M. (2013). Suicide by hydrogen sulfide inhalation. The American Journal of Forensic Medicine and Pathology, 34, 23–25.

    Article  PubMed  Google Scholar 

  12. Bouillaud, F., & Blachier, F. (2011). Mitochondria and sulfide: A very old story of poisoning, feeding, and signaling? Antioxidants & Redox Signaling, 15, 379–391.

    Article  CAS  Google Scholar 

  13. Carroll, J. J., & Mather, A. E. (1989). The solubility of hydrogen sulfide in water from 0 to 90°C and pressures to 1 MPa. Geochimica et Cosmochimica Acta, 53, 1163–1170.

    Article  CAS  Google Scholar 

  14. Chenard, L., Lemay, S. P., & Lague, C. (2003). Hydrogen sulfide assessment in shallow-pit swine housing and outside manure storage. Journal of Agricultural Safety and Health, 9, 285–302.

    Article  PubMed  CAS  Google Scholar 

  15. Chenuel, B., Sonobe, T., & Haouzi, P. (2015). Effects of infusion of human methemoglobin solution following hydrogen sulfide poisoning. Clinical Toxicology (Philadelphia, PA), 53, 93–101.

    Article  PubMed Central  CAS  Google Scholar 

  16. Clifton, J., 2nd, & Leikin, J. B. (2003). Methylene blue. American Journal of Therapeutics, 10, 289–291.

    Article  PubMed  Google Scholar 

  17. Cooper, C. E., & Brown, G. C. (2008). The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: Chemical mechanism and physiological significance. Journal of Bioenergetics and Biomembranes, 40, 533–539.

    Article  PubMed  CAS  Google Scholar 

  18. De Bruyn, W. J., Swartz, E., Hu, J. H., Shorter, J. A., Davidovits, P., Worsnop, D. R., et al. (1995). Henry’s law solubilities and Setchenow coefficients for biogenic reduced sulfur species obtained from gas-liquid uptake measurements. Journal of Geophysical Research, 100, 7245–7251.

    Article  CAS  Google Scholar 

  19. Dorman, D. C., Moulin, F. J., McManus, B. E., Mahle, K. C., James, R. A., & Struve, M. F. (2002). Cytochrome oxidase inhibition induced by acute hydrogen sulfide inhalation: Correlation with tissue sulfide concentrations in the rat brain, liver, lung, and nasal epithelium. Toxicological Sciences, 65, 18–25.

    Article  PubMed  CAS  Google Scholar 

  20. Douabul, A. A., & Riley, J. P. (1979). The solubility of gases in distilled water and seawater—V. Hydrogen sulphide. Deep-Sea Research, 26A, 259–268.

    Article  Google Scholar 

  21. EPA. (2003). Toxicological review of hydrogen sulfide (CAC No 7783-06-04). Washington, DC: United States Environmental Protection Agency.

    Google Scholar 

  22. Foulkes, C. H. (1934). Gas!” The story of the special brigade. Edinburgh: Blackwood & Sons.

    Google Scholar 

  23. Fuller, D. C., & Suruda, A. J. (2000). Occupationally related hydrogen sulfide deaths in the United States from 1984 to 1994. Journal of Occupational and Environmental Medicine, 42, 939–942.

    Article  PubMed  CAS  Google Scholar 

  24. Furne, J., Saeed, A., & Levitt, M. D. (2008). Whole tissue hydrogen sulfide concentrations are orders of magnitude lower than presently accepted values. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 295, R1479–R1485.

    PubMed  CAS  Google Scholar 

  25. Ginimuge, P. R., & Jyothi, S. D. (2010). Methylene blue: Revisited. Journal of Anaesthesiology, Clinical Pharmacology, 26, 517–520.

    PubMed  PubMed Central  Google Scholar 

  26. Goodwin, L. R., Francom, D., Dieken, F. P., Taylor, J. D., Warenycia, M. W., Reiffenstein, R. J., et al. (1989). Determination of sulfide in brain tissue by gas dialysis/ion chromatography: Postmortem studies and two case reports. Journal of Analytical Toxicology, 13, 105–109.

    Article  PubMed  CAS  Google Scholar 

  27. Guidotti, T. L. (2010). Hydrogen sulfide: Advances in understanding human toxicity. International Journal of Toxicology, 29, 569–581.

    Article  PubMed  CAS  Google Scholar 

  28. Guidotti, T. L. (1996). Hydrogen sulphide. Occupational Medicine (London), 46, 367–371.

    Article  CAS  Google Scholar 

  29. Haggard, H. W. (1921). The fate of sulfides in the blood. Journal of Biological Chemistry, 49, 519–529.

    CAS  Google Scholar 

  30. Hagihara, A., Abe, T., Omagari, M., Motoi, M., & Nabeshima, Y. (2014). The impact of newspaper reporting of hydrogen sulfide suicide on imitative suicide attempts in Japan. Social Psychiatry and Psychiatric Epidemiology, 49, 221–229.

    Article  PubMed  Google Scholar 

  31. Hall, A. H., & Rumack, B. H. (1997). Hydrogen sulfide poisoning: An antidotal role for sodium nitrite? Veterinary and Human Toxicology, 39, 152–154.

    PubMed  CAS  Google Scholar 

  32. Hall, A. H., Saiers, J., & Baud, F. (2009). Which cyanide antidote? Critical Reviews in Toxicology, 39, 541–552.

    Article  PubMed  CAS  Google Scholar 

  33. Haouzi, P. (2016). Is exogenous hydrogen sulfide a relevant tool to address physiological questions on hydrogen sulfide? Respiratory Physiology & Neurobiology, 229, 5–10.

    Article  CAS  Google Scholar 

  34. Haouzi, P., Bell, H., & Philmon, M. (2011). Hydrogen sulfide oxidation and the arterial chemoreflex: Effect of methemoglobin. Respiratory Physiology & Neurobiology, 177, 273–283.

    Article  CAS  Google Scholar 

  35. Haouzi, P., Bell, H., & Van de Louw, A. (2011). Hypoxia-induced arterial chemoreceptor stimulation and hydrogen sulfide: Too much or too little? Respiratory Physiology & Neurobiology, 179, 97–102.

    Article  CAS  Google Scholar 

  36. Haouzi, P., & Klingerman, C. M. (2013). Fate of intracellular H2S/HS and metallo-proteins. Respiratory Physiology & Neurobiology, 188, 229–230.

    Article  CAS  Google Scholar 

  37. Haouzi, P., Sonobe, T., & Judenherc-Haouzi, A. (2016). Developing effective countermeasures against acute hydrogen sulfide intoxication: Challenges and limitations. Annals of the New York Academy of Sciences, 1374, 29–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Haouzi, P., Sonobe, T., Torsell-Tubbs, N., Prokopczyk, B., Chenuel, B., & Klingerman, C. M. (2014). In vivo interactions between cobalt or ferric compounds and the pools of sulphide in the blood during and after H2S poisoning. Toxicological Sciences, 141, 493–504.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Henderson, S. A., Goldhaber, J. I., So, J. M., Han, T., Motter, C., Ngo, A., et al. (2004). Functional adult myocardium in the absence of Na+–Ca2+ exchange: Cardiac-specific knockout of NCX1. Circulation Research, 95, 604–611.

    Article  PubMed  CAS  Google Scholar 

  40. Hoffman, N. E., Miller, B. A., Wang, J., Elrod, J. W., Rajan, S., Gao, E., et al. (2015). Ca2+ entry via Trpm2 is essential for cardiac myocyte bioenergetics maintenance. American Journal of Physiology Heart and Circulatory Physiology, 308, H637–H650.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Irrinki, K. M., Mallilankaraman, K., Thapa, R. J., Chandramoorthy, H. C., Smith, F. J., Jog, N. R., et al. (2011). Requirement of FADD, NEMO, and BAX/BAK for aberrant mitochondrial function in tumor necrosis factor alpha-induced necrosis. Molecular and Cellular Biology, 31, 3745–3758.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Ishigami, M., Hiraki, K., Umemura, K., Ogasawara, Y., Ishii, K., & Kimura, H. (2009). A source of hydrogen sulfide and a mechanism of its release in the brain. Antioxidants & Redox Signaling, 11, 205–214.

    Article  CAS  Google Scholar 

  43. Judenherc-Haouzi, A., Zhang, X. Q., Sonobe, T., Song, J., Rannals, M. D., Wang, J., et al. (2016). Methylene blue counteracts H2S toxicity-induced cardiac depression by restoring L-type Ca channel activity. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 310, R1030–R1044.

    PubMed  Google Scholar 

  44. Kelner, M. J., & Alexander, N. M. (1985). Methylene blue directly oxidizes glutathione without the intermediate formation of hydrogen peroxide. Journal of Biological Chemistry, 260, 15168–15171.

    PubMed  CAS  Google Scholar 

  45. Khan, A. A., Schuler, M. M., Prior, M. G., Yong, S., Coppock, R. W., Florence, L. Z., et al. (1990). Effects of hydrogen sulfide exposure on lung mitochondrial respiratory chain enzymes in rats. Toxicology and Applied Pharmacology, 103, 482–490.

    Article  PubMed  CAS  Google Scholar 

  46. Klingerman, C. M., Trushin, N., Prokopczyk, B., & Haouzi, P. (2013). H2S concentrations in the arterial blood during H2S administration in relation to its toxicity and effects on breathing. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 305, R630–R638.

    PubMed  CAS  Google Scholar 

  47. Kohn, M. C., Melnick, R. L., Ye, F., & Portier, C. J. (2002). Pharmacokinetics of sodium nitrite-induced methemoglobinemia in the rat. Drug Metabolism and Disposition, 30, 676–683.

    Article  PubMed  CAS  Google Scholar 

  48. Lagoutte, E., Mimoun, S., Andriamihaja, M., Chaumontet, C., Blachier, F., & Bouillaud, F. (2010). Oxidation of hydrogen sulfide remains a priority in mammalian cells and causes reverse electron transfer in colonocytes. Biochimica et Biophysica Acta, 1797, 1500–1511.

    Article  PubMed  CAS  Google Scholar 

  49. Leschelle, X., Goubern, M., Andriamihaja, M., Blottiere, H. M., Couplan, E., Gonzalez-Barroso, M. D., et al. (2005). Adaptative metabolic response of human colonic epithelial cells to the adverse effects of the luminal compound sulfide. Biochimica et Biophysica Acta, 1725, 201–212.

    Article  PubMed  CAS  Google Scholar 

  50. Levitt, M. D., Abdel-Rehim, M. S., & Furne, J. (2011). Free and acid-labile hydrogen sulfide concentrations in mouse tissues: Anomalously high free hydrogen sulfide in aortic tissue. Antioxidants & Redox Signaling, 15, 373–378.

    Article  CAS  Google Scholar 

  51. Mihajlovic, A. (1999). Antidotal mechanisms for hydrogen sulfide toxicity. Master of Science thesis, Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, p. 69.

  52. Miller, B. A., Hoffman, N. E., Merali, S., Zhang, X. Q., Wang, J., Rajan, S., et al. (2014). Trpm2 channels protect against cardiac ischemia-reperfusion injury: Role of mitochondria. Journal of Biological Chemistry, 289, 7615–7629.

    Article  PubMed  CAS  Google Scholar 

  53. Millero, F. J. (1986). The thermodynamics and kinetics of hydrogen sulfide system in natural waters. Marine Chemistry, 18, 121–147.

    Article  CAS  Google Scholar 

  54. Modis, K., Bos, E. M., Calzia, E., van Goor, H., Coletta, C., Papapetropoulos, A., et al. (2014). Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part II. Pathophysiological and therapeutic aspects. British Journal of Pharmacology, 171, 2123–2146.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Ogasawara, Y., Isoda, S., & Tanabe, S. (1994). Tissue and subcellular distribution of bound and acid-labile sulfur, and the enzymic capacity for sulfide production in the rat. Biological & Pharmaceutical Bulletin, 17, 1535–1542.

    Article  CAS  Google Scholar 

  56. Reedy, S. J., Schwartz, M. D., & Morgan, B. W. (2011). Suicide fads: Frequency and characteristics of hydrogen sulfide suicides in the United States. Western Journal of Emergency Medicine, 12, 300–304.

    PubMed  PubMed Central  Google Scholar 

  57. Reiffenstein, R. J., Hulbert, W. C., & Roth, S. H. (1992). Toxicology of hydrogen sulfide. Annual Review of Pharmacology and Toxicology, 32, 109–134.

    Article  PubMed  CAS  Google Scholar 

  58. Resch, P., Field, R. J., Schneider, W., & Burger, M. (1989). Reduction of methylene blue by sulfide ion in the presence and absence of oxygen: Simulation of the methylene blue-Op-HS- CSTR Oscillations. Journal of Physical Chemistry, 93, 8181–8186.

    Article  CAS  Google Scholar 

  59. Sevcikt, P., & Dunford, H. (1991). Kinetics of the oxidation of NADH by methylene blue In a closed system. Journal of Physical Chemistry, 95, 2411–2415.

    Article  Google Scholar 

  60. Smilkstein, M. J., Bronstein, A. C., Pickett, H. M., & Rumack, B. H. (1985). Hyperbaric oxygen therapy for severe hydrogen sulfide poisoning. Journal of Emergency Medicine, 3, 27–30.

    Article  PubMed  CAS  Google Scholar 

  61. Smith, L., Kruszyna, H., & Smith, R. P. (1977). The effect of methemoglobin on the inhibition of cytochrome c oxidase by cyanide, sulfide or azide. Biochemical Pharmacology, 26, 2247–2250.

    Article  PubMed  CAS  Google Scholar 

  62. Smith, R. P. (1969). Cobalt salts: Effects in cyanide and sulfide poisoning and on methemoglobinemia. Toxicology and Applied Pharmacology, 15, 505–516.

    Article  PubMed  CAS  Google Scholar 

  63. Smith, R. P. (1967). The oxygen and sulfide binding characteristics of hemoglobins generated from methemoglobin by two erythrocytic systems. Molecular Pharmacology, 3, 378–385.

    PubMed  CAS  Google Scholar 

  64. Smith, R. P., & Gosselin, R. E. (1976). Current concepts about the treatment of selected poisonings: Nitrite, cyanide, sulfide, barium, and quinidine. Annual Review of Pharmacology and Toxicology, 16, 189–199.

    Article  PubMed  CAS  Google Scholar 

  65. Smith, R. P., & Gosselin, R. E. (1979). Hydrogen sulfide poisoning. Journal of Occupational Medicine, 21, 93–97.

    Article  PubMed  CAS  Google Scholar 

  66. Smith, R. P., & Gosselin, R. E. (1966). On the mechanism of sulfide inactivation by methemoglobin. Toxicology and Applied Pharmacology, 8, 159–172.

    Article  PubMed  CAS  Google Scholar 

  67. Smith, R. P., Kruszyna, R., & Kruszyna, H. (1976). Management of acute sulfide poisoning. Effects of oxygen, thiosulfate, and nitrite. Archives of Environmental Health, 31, 166–169.

    Article  PubMed  CAS  Google Scholar 

  68. Song, J., Gao, E., Wang, J., Zhang, X. Q., Chan, T. O., Koch, W. J., et al. (2012). Constitutive overexpression of phospholemman S68E mutant results in arrhythmias, early mortality and heart failure: Potenial involvement of Na+/Ca2+ exchanger. American Journal of Physiology Heart and Circulatory Physiology, 302, H770–H781.

    Article  PubMed  CAS  Google Scholar 

  69. Song, J., Zhang, X. Q., Wang, J., Cheskis, E., Chan, T. O., Feldman, A. M., et al. (2008). Regulation of cardiac myocyte contractility by phospholemman: Na+/Ca2+ exchange vs. Na+-K+-ATPase. American Journal of Physiology Heart and Circulatory Physiology, 295, H1615–H1625.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Sonobe, T., Chenuel, B., Cooper, T. K., & Haouzi, P. (2015). Immediate and long-term outcome of acute H2S intoxication induced coma in unanesthetized rats: Effects of methylene blue. PLoS ONE, 10, e0131340.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Sonobe, T., & Haouzi, P. (2016). H2S concentrations in the heart after acute H2S administration: Methodological and physiological considerations. American Journal of Physiology Heart and Circulatory Physiology, 311, H1445–H1458.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Sonobe, T., & Haouzi, P. (2015). H2S induced coma and cardiogenic shock in the rat: Effects of phenothiazinium chromophores. Clinical Toxicology (Philadelphia, PA), 53, 525–539.

    Article  PubMed Central  CAS  Google Scholar 

  73. Sonobe, T., & Haouzi, P. (2016). Sulfide intoxication-induced circulatory failure is mediated by a depression in cardiac contractility. Cardiovascular Toxicology, 16, 67–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Sun, Y. G., Cao, Y. X., Wang, W. W., Ma, S. F., Yao, T., & Zhu, Y. C. (2008). Hydrogen sulphide is an inhibitor of L-type calcium channels and mechanical contraction in rat cardiomyocytes. Cardiovascular Research, 79, 632–641.

    Article  PubMed  CAS  Google Scholar 

  75. Tadros, G. M., Zhang, X. Q., Song, J., Carl, L. L., Rothblum, L. I., Tian, Q., et al. (2002). Effects of Na+/Ca2+ exchanger downregulation on contractility and [Ca2+]i transients in adult rat myocytes. American Journal of Physiology Heart and Circulatory Physiology, 283, H1616–H1626.

    Article  PubMed  CAS  Google Scholar 

  76. Toombs, C. F., Insko, M. A., Wintner, E. A., Deckwerth, T. L., Usansky, H., Jamil, K., et al. (2010). Detection of exhaled hydrogen sulphide gas in healthy human volunteers during intravenous administration of sodium sulphide. British Journal of Clinical Pharmacology, 69, 626–636.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Truong, D. H., Mihajlovic, A., Gunness, P., Hindmarsh, W., & O’Brien, P. J. (2007). Prevention of hydrogen sulfide (H2S)-induced mouse lethality and cytotoxicity by hydroxocobalamin (vitamin B(12a)). Toxicology, 242, 16–22.

    Article  PubMed  CAS  Google Scholar 

  78. Truscott, A. (2008). Suicide fad threatens neighbours, rescuers. CMAJ, 179, 312–313.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Tucker, A. L., Song, J., Zhang, X. Q., Wang, J., Ahlers, B. A., Carl, L. L., et al. (2006). Altered contractility and [Ca2+]i homeostasis in phospholemman-deficient murine myocytes: Role of Na+/Ca2+ exchange. American Journal of Physiology Heart and Circulatory Physiology, 291, H2199–H2209.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Ubuka, T., Abe, T., Kajikawa, R., & Morino, K. (2001). Determination of hydrogen sulfide and acid-labile sulfur in animal tissues by gas chromatography and ion chromatography. Journal of Chromatography B: Biomedical Sciences and Applications, 757, 31–37.

    Article  PubMed  CAS  Google Scholar 

  81. Van de Louw, A., & Haouzi, P. (2013). Ferric Iron and Cobalt (III) compounds to safely decrease hydrogen sulfide in the body? Antioxidants & Redox Signaling, 19, 510–516.

    Article  CAS  Google Scholar 

  82. Wang, J., Chan, T. O., Zhang, X. Q., Gao, E., Song, J., Koch, W. J., et al. (2009). Induced overexpression of Na+/Ca2+ exchanger transgene: Altered myocyte contractility, [Ca2+]i transients, SR Ca2+ contents and action potential duration. American Journal of Physiology Heart and Circulatory Physiology, 297, H590–H601.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Wang, J., Gao, E., Rabinowitz, J., Song, J., Zhang, X. Q., Koch, W. J., et al. (2011). Regulation of in vivo cardiac contractility by phospholemman: Role of Na+/Ca2+ exchange. American Journal of Physiology Heart and Circulatory Physiology, 300, H859–H868.

    Article  PubMed  CAS  Google Scholar 

  84. Wang, J., Gao, E., Song, J., Zhang, X. Q., Li, J., Koch, W. J., et al. (2010). Phospholemman and β-adrenergic stimulation in the heart. American Journal of Physiology Heart and Circulatory Physiology, 298, H807–H815.

    Article  PubMed  CAS  Google Scholar 

  85. Warenycia, M. W., Goodwin, L. R., Francom, D. M., Dieken, F. P., Kombian, S. B., & Reiffenstein, R. J. (1990). Dithiothreitol liberates non-acid labile sulfide from brain tissue of H2S-poisoned animals. Archives of Toxicology, 64, 650–655.

    Article  PubMed  CAS  Google Scholar 

  86. Wei, H., Zhang, G., Qiu, S., Lu, J., Sheng, J., Tan, G., et al. (2012). Hydrogen sulfide suppresses outward rectifier potassium currents in human pluripotent stem cell-derived cardiomyocytes. PLoS ONE, 7, e50641.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Wendel, W. B. (1934). The Mechanism of antidotal action of methylene blue in cyanide poisoning. Science, 80, 381–382.

    Article  Google Scholar 

  88. Whitfield, N. L., Kreimier, E. L., Verdial, F. C., Skovgaard, N., & Olson, K. R. (2008). Reappraisal of H2S/sulfide concentration in vertebrate blood and its potential significance in ischemic preconditioning and vascular signaling. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 294, R1930–R1937.

    PubMed  CAS  Google Scholar 

  89. Wiklund, L., Basu, S., Miclescu, A., Wiklund, P., Ronquist, G., & Sharma, H. S. (2007). Neuro- and cardioprotective effects of blockade of nitric oxide action by administration of methylene blue. Annals of the New York Academy of Sciences, 1122, 231–244.

    Article  PubMed  CAS  Google Scholar 

  90. Wintner, E. A., Deckwerth, T. L., Langston, W., Bengtsson, A., Leviten, D., Hill, P., et al. (2010). A monobromobimane-based assay to measure the pharmacokinetic profile of reactive sulphide species in blood. British Journal of Pharmacology, 160, 941–957.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Wright, R. O., Lewander, W. J., & Woolf, A. D. (1999). Methemoglobinemia: Etiology, pharmacology, and clinical management. Annals of Emergency Medicine, 34, 646–656.

    Article  PubMed  CAS  Google Scholar 

  92. Xu, H., Guo, W., & Nerbonne, J. M. (1999). Four kinetically distinct depolarization-activated K+ currents in adult mouse ventricular myocytes. Journal of General Physiology, 113, 661–678.

    Article  PubMed  CAS  Google Scholar 

  93. Zhang, R., Sun, Y., Tsai, H., Tang, C., Jin, H., & Du, J. (2012). Hydrogen sulfide inhibits L-type calcium currents depending upon the protein sulfhydryl state in rat cardiomyocytes. PLoS ONE, 7, e37073.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Zhang, X., Rojas, J. C., & Gonzalez-Lima, F. (2006). Methylene blue prevents neurodegeneration caused by rotenone in the retina. Neurotoxicity Research, 9, 47–57.

    Article  PubMed  Google Scholar 

  95. Zhang, X. Q., Ahlers, B. A., Tucker, A. L., Song, J., Wang, J., Moorman, J. R., et al. (2006). Phospholemman inhibition of the cardiac Na+/Ca2+ exchanger. Role of phosphorylation. Journal of Biological Chemistry, 281, 7784–7792.

    Article  PubMed  CAS  Google Scholar 

  96. Zhang, X. Q., Qureshi, A., Song, J., Carl, L. L., Tian, Q., Stahl, R. C., et al. (2003). Phospholemman modulates Na+/Ca2+ exchange in adult rat cardiac myocytes. American Journal of Physiology Heart and Circulatory Physiology, 284, H225–H233.

    Article  PubMed  CAS  Google Scholar 

  97. Zhang, X. Q., Zhang, L. Q., Palmer, B. M., Ng, Y. C., Musch, T. I., Moore, R. L., et al. (2001). Sprint training shortens prolonged action potential duration in postinfarction rat myocyte: Mechanisms. Journal of Applied Physiology, 90, 1720–1728.

    Article  PubMed  CAS  Google Scholar 

  98. Zhou, Y. Y., Wang, S. Q., Zhu, W. Z., Chruscinski, A., Kobilka, B. K., Ziman, B., et al. (2000). Culture and adenoviral infection of adult mouse cardiac myocytes: Methods for cellular genetic physiology. American Journal of Physiology Heart and Circulatory Physiology, 279, H429–H436.

    Article  PubMed  CAS  Google Scholar 

  99. Zima, A. V., & Blatter, L. A. (2006). Redox regulation of cardiac calcium channels and transporters. Cardiovascular Research, 71, 310–321.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by NIH RO1-HL123093, RO1-HL137426, UO1-NS097162, R21-NS098991, and American Heart Association Grant-in-Aid 15GRNT25680042.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Y. Cheung.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheung, J.Y., Wang, J., Zhang, XQ. et al. Methylene Blue Counteracts H2S-Induced Cardiac Ion Channel Dysfunction and ATP Reduction. Cardiovasc Toxicol 18, 407–419 (2018). https://doi.org/10.1007/s12012-018-9451-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-018-9451-5

Keywords

Navigation