Skip to main content

Advertisement

Log in

Health Risk Assessment of Trace Metals Through Breast Milk Consumption in Saudi Arabia

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

We previously measured the levels of inorganic mercury, methylmercury, lead, cadmium, and manganese in the breast milk of 203 healthy Saudi mothers who participated in a cross-sectional study between 2011 and 2013. The current study aimed to (1) calculate reference values (RVs) for these metals in breast milk based on the 95th percentile of the metal and the corresponding 95% confidence interval following the approach of the German Human Biomonitoring Commission, and (2) assess the health risk associated with these metals (except lead) by determining the hazard quotient (HQ) and hazard index (HI) for breastfed infants. The risk characterization for the lead was applied using the margin of exposure (MOE) approach. Moreover, the cancer risk (CR) associated with lead was calculated. The RV95s (percentage of samples for which the value was higher than the set value) for inorganic mercury, methylmercury, total mercury, cadmium, lead, and manganese in breast milk (μg/L) were 1.5 (7.9%), 1.5 (5.4%), 2.8 (8.9%), 2.5 (8.4%), 53 (11.3%), and 22.3 (11.8%) μg/L, respectively. The methylmercury, lead, and manganese levels in the present study were higher than those reported previously. The HQ for methylmercury greater than 1 was found in 68.5% of the samples, indicating there may be a potential non-carcinogenic health risk of infant exposure to the toxic metal via breast milk consumption. Despite the high cadmium and manganese levels in breast milk, our results suggested no health risk (HQ < 1). The HI representing the combined non-carcinogenic health risk of four metals was > 1, with methylmercury (74%) being the major contributor. The estimated MOE mean value of 0.134, less than 1, indicates that our breastfed infants may be at increased risk of neurodevelopmental impairments. The CR for lead in two infants was higher than the acceptable level of 1 × 10−4. Although our results may suggest potential carcinogenic and non-carcinogenic risks of infant exposure to toxic metals through breast milk consumption, the benefits of breastfeeding are well recognized and outweigh the potential risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The data that has been used is confidential.

References

  1. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. Exp Suppl 101:133–164. https://doi.org/10.1007/978-3-7643-8340-4_6

    Article  PubMed  Google Scholar 

  2. Bridges CC, Zalups RK (2017) Mechanisms involved in the transport of mercuric ions in target tissues. Arch Toxicol 91(1):63–81. https://doi.org/10.1007/s00204-016-1803-y

    Article  CAS  PubMed  Google Scholar 

  3. Satarug S (2018) Dietary cadmium intake and its effects on kidneys. Toxics 6(1). https://doi.org/10.3390/toxics6010015

  4. NTP, National Toxicology Program (2012) NTP monograph on health effects of low-level lead. NTP Monogr xiii(1):xv–148

    Google Scholar 

  5. Agency for Toxic Substances and Disease Registry (ATSDR) (2017) “ATSDR Substance Priority List,”. [Online]. Available: https://www.atsdr.cdc.gov/SPL/#2017spl

  6. Sachse B, Kolbaum AE, Ziegenhagen R, Andres S, Berg K, Dusemund B, Hirsch-Ernst KI, Kappenstein O, Muller F, Rohl C, Lindtner O, Lampen A, Schafer B (2019) Dietary manganese exposure in the adult population in Germany-what does it mean in relation to health risks? Mol Nutr Food Res 63(16):e1900065. https://doi.org/10.1002/mnfr.201900065

    Article  CAS  PubMed  Google Scholar 

  7. Erikson KM, Aschner M (2019) Manganese: its role in disease and health. Met Ions Life Sci 19. https://doi.org/10.1515/9783110527872-016

  8. Beryllium, Cadmium, Mercury, and Exposures in the Glass Manufacturing Industry (1993) IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol 58. International Agency for Research on Cancer, Lyon [Online]. Available: http://monographs.iarc.fr/ENG/Monographs/vol58/mono58.pdf

  9. Inorganic and Organic Lead Compounds (2006) IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol 87. International Agency for Research on Cancer, Lyon [Online]. Available: http://monographs.iarc.fr/ENG/Monographs/vol87/mono87.pdf

  10. Williams M, Todd GD, Roney N, Crawford J, Coles C, McClure PR, Garey JD, Zaccaria K, Citra M (2012) Agency for Toxic Substances and Disease Registry (ATSDR) Toxicological Profiles. In: Toxicological Profile for Manganese. Agency for Toxic Substances and Disease Registry (US). Atlanta (GA) [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK158872/

  11. Gil F, Hernandez AF (2015) Toxicological importance of human biomonitoring of metallic and metalloid elements in different biological samples. Food Chem Toxicol 80:287–297. https://doi.org/10.1016/j.fct.2015.03.025

    Article  CAS  PubMed  Google Scholar 

  12. Dieterich CM, Felice JP, O'Sullivan E, Rasmussen KM (2013) Breastfeeding and health outcomes for the mother-infant dyad. Pediatr Clin N Am 60(1):31–48. https://doi.org/10.1016/j.pcl.2012.09.010

    Article  Google Scholar 

  13. LaKind JS, Lehmann GM, Davis MH, Hines EP, Marchitti SA, Alcala C, Lorber M (2018) Infant dietary exposures to environmental chemicals and infant/child health: a critical assessment of the literature. Environ Health Perspect 126(9):96002. https://doi.org/10.1289/ehp1954

    Article  CAS  PubMed  Google Scholar 

  14. Nickerson K (2006) Environmental contaminants in breast milk. J Midwifery Womens Health 51(1):26–34. https://doi.org/10.1016/j.jmwh.2005.09.006

    Article  PubMed  Google Scholar 

  15. Tanabe S, Kunisue T (2007) Persistent organic pollutants in human breast milk from Asian countries. Environ Pollut 146(2):400–413. https://doi.org/10.1016/j.envpol.2006.07.003

    Article  CAS  PubMed  Google Scholar 

  16. Rebelo FM, Caldas ED (2016) Arsenic, lead, mercury and cadmium: toxicity, levels in breast milk and the risks for breastfed infants. Environ Res 151:671–688. https://doi.org/10.1016/j.envres.2016.08.027

    Article  CAS  PubMed  Google Scholar 

  17. Samiee F, Vahidinia A, Taravati Javad M, Leili M (2019) Exposure to heavy metals released to the environment through breastfeeding: a probabilistic risk estimation. Sci Total Environ 650(Pt 2):3075–3083. https://doi.org/10.1016/j.scitotenv.2018.10.059

    Article  CAS  PubMed  Google Scholar 

  18. Schulz C, Wilhelm M, Heudorf U, Kolossa-Gehring M (2012) Reprint of “Update of the reference and HBM values derived by the German Human Biomonitoring Commission”. Int J Hyg Environ Health 215(2):150–158. https://doi.org/10.1016/j.ijheh.2012.01.003

    Article  PubMed  Google Scholar 

  19. PetitClerc C, Solberg HE (1987) Approved recommendation (1987) on the theory of reference values. Part 2. Selection of individuals for the production of reference values. Clin Chim Acta 170(2):S1–S11. https://doi.org/10.1016/0009-8981(87)90150-1

    Article  Google Scholar 

  20. Poulson OM, Holst E, Christensen JM (1997) Calculation and application of coverage intervals for biological reference values (technical report). Pure Appl Chem 69(7):1601–1612. https://doi.org/10.1351/pac199769071601

    Article  Google Scholar 

  21. Human Biomonitoring Commission (HBM) (2015) Reference and HBM Values. [Online]. Available: https://www.umweltbundesamt.de/en/topics/health/commissions-working-groups/human-biomonitoring-commission/reference-hbm-values

  22. Vogel N, Conrad A, Apel P, Rucic E, Kolossa-Gehring M (2019) Human biomonitoring reference values: differences and similarities between approaches for identifying unusually high exposure of pollutants in humans. Int J Hyg Environ Health 222(1):30–33. https://doi.org/10.1016/j.ijheh.2018.08.002

    Article  CAS  PubMed  Google Scholar 

  23. Angerer J, Aylward LL, Hays SM, Heinzow B, Wilhelm M (2011) Human biomonitoring assessment values: approaches and data requirements. Int J Hyg Environ Health 214(5):348–360. https://doi.org/10.1016/j.ijheh.2011.06.002

    Article  CAS  PubMed  Google Scholar 

  24. Golding J (1997) Unnatural constituents of breast milk--medication, lifestyle, pollutants, viruses. Early Hum Dev 49(Suppl):S29–S43. https://doi.org/10.1016/s0378-3782(97)00052-2

    Article  CAS  PubMed  Google Scholar 

  25. Grandjean P, Herz KT (2015) Trace elements as paradigms of developmental neurotoxicants: lead, methylmercury and arsenic. J Trace Elem Med Biol 31:130–134. https://doi.org/10.1016/j.jtemb.2014.07.023

    Article  CAS  PubMed  Google Scholar 

  26. Bruckner JV (2000) Differences in sensitivity of children and adults to chemical toxicity: the NAS panel report. Regul Toxicol Pharmacol 31(3):280–285. https://doi.org/10.1006/rtph.2000.1393

    Article  CAS  PubMed  Google Scholar 

  27. Al-Saleh I, Shinwari N, Mashhour A (2003) Heavy metal concentrations in the breast milk of Saudi women. Biol Trace Elem Res 96(1–3):21–37. https://doi.org/10.1385/BTER:96:1-3:21

    Article  CAS  PubMed  Google Scholar 

  28. Al-Saleh I, Al-Mohawes S, Al-Rouqi R, Elkhatib R (2019) Selenium status in lactating mothers-infants and its potential protective role against the neurotoxicity of methylmercury, lead, manganese, and DDT. Environ Res 176:108562. https://doi.org/10.1016/j.envres.2019.108562

    Article  CAS  PubMed  Google Scholar 

  29. Al-Saleh I, Abduljabbar M, Al-Rouqi R, Eltabache C, Al-Rajudi T, Elkhatib R, Nester M (2015) The extent of mercury (Hg) exposure among Saudi mothers and their respective infants. Environ Monit Assess 187(11):678. https://doi.org/10.1007/s10661-015-4858-y

    Article  CAS  PubMed  Google Scholar 

  30. Al-Saleh I, Nester M, Abduljabbar M, Al-Rouqi R, Eltabache C, Al-Rajudi T, Elkhatib R (2016) Mercury (Hg) exposure and its effects on Saudi breastfed infant’s neurodevelopment. Int J Hyg Environ Health 219(1):129–141. https://doi.org/10.1016/j.ijheh.2015.10.002

    Article  CAS  PubMed  Google Scholar 

  31. United States Environmental Protection Agency (US EPA) Human milk intake. In: Exposure Factors Handbook: 2011 Edition. National Center for Environmental Assessment, Washington, DC EPA/600/R-09/052F. [Online]. Available: https://nepis.epa.gov/Exe/ZyPDF.cgi/P100F2OS.PDF?Dockey=P100F2OS.PDF

  32. Colorado Department of Public Health & Environment (2007) Garfield County Air Toxics Inhalation: Screening Level Human Health Risk Assessment: Inhalation of Volatile organic Compounds Measured in Rural, Urban, and Oil & Gas Areas in Ambient Air Study (June 2005–May 2007). Environmental Epidemiology Department, Colorado Department of Public Health & Environment, Denver [Online]. Available: https://www.garfield-county.com/environmental-health/wp-content/uploads/sites/16/2019/07/Working-Draft-CDPHE-Screeing-Level-Risk-Air-Toxics-Assessment-12-20-07.pdf

  33. United States Environmental Protection Agency (US EPA) (2001) Integrated Risk Information System: Methylmercury (MeHg) (CASRN 22967-92-6). [Online]. Available: https://cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?substance_nmbr=73

  34. United States Environmental Protection Agency (US EPA) (1995) Integrated Risk Information System (IRIS), Chemical Assessment Summary: Mercuric chloride (HgCl2); CASRN 7487-94-7. [Online]. Available: https://cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?substance_nmbr=692

  35. United States Environmental Protection Agency (US EPA) (1989) Integrated risk information System, Chemical Assessment Summary, Cadmium; CASRN 7440-43-9. [Online]. Available: https://iris.epa.gov/ChemicalLanding/&substance_nmbr=141

  36. United States Environmental Protection Agency (US EPA) (1995) Integrated risk information System, Chemical Assessment Summary, Manganese; CASRN 7439-96-5. [Online]. Available: https://cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?substance_nmbr=373

  37. United States Environmental Protection Agency (US EPA) (2005) Integrated Risk Information System, Chemical Assessment Summary, Lead and compounds (inorganic); CASRN 7439-92-1. [Online]. Available: https://cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?substance_nmbr=277

  38. United States Environmental Protection Agency (US EPA) (2011) EPA’s National-scale Air Toxics Assessment, An Overview of Methods for EPA’s National-Scale Air Toxics Assessment. [Online]. Available: https://www.epa.gov/sites/production/files/2015-10/documents/2005-nata-tmd.pdf

  39. ESFA, European Safe Food Authority, Panel on Contaminants in the Food Chain (2010) Scientific Opinion on Lead in Food. EFSA J 8(4):1570–1n/a. https://doi.org/10.2903/j.efsa.2010.1570

    Article  CAS  Google Scholar 

  40. EFSA, European Food Safety, Authority (2012) Lead dietary exposure in the European population. EFSA J 10(7):2831–2n/a. https://doi.org/10.2903/j.efsa.2012.2831

    Article  CAS  Google Scholar 

  41. EFSA (2010) Scientific opinion on lead in food. EFSA J 8(4):1570. https://doi.org/10.2903/j.efsa.2010.1570

    Article  CAS  Google Scholar 

  42. Office of Environmental Health Hazard Assessment (OEHHA). (2019) Lead and Lead Compounds. [Online]. Available: https://oehha.ca.gov/chemicals/lead-and-lead-compounds

  43. United States Environmental Protection Agency (US EPA) (1989) Risk Assessment Guidance for Superfund Volume I Human Health Evaluation Manual (Part A). [Online]. Available: https://www.epa.gov/sites/production/files/2015-09/documents/rags_a.pdf

  44. Tukey JW (1977) Exploratory data analysis, One edn. Addison-Wesley, Reading

    Google Scholar 

  45. Lehman RS (1991) Statistics and research design in the behavioral sciences. Wadsworth/Thomson Learning, Wadsworth/Thomson, Belmont

    Google Scholar 

  46. Drasch G, Aigner S, Roider G, Staiger F, Lipowsky G (1998) Mercury in human colostrum and early breast milk. Its dependence on dental amalgam and other factors. J Trace Elem Med Biol 12(1):23–27

    Article  CAS  Google Scholar 

  47. Dorea JG (2004) Mercury and lead during breast-feeding. Br J Nutr 92(1):21–40. https://doi.org/10.1079/bjn20041163

    Article  CAS  PubMed  Google Scholar 

  48. WHO/IAEA, World Health Organization and International Atomic Energy Agency (WHO/IAEA) (1989) Minor and trace elements in breast milk: report of a Joint WHO/IAEA Collaborative Study. World Health Organization [Online]. Available: https://apps.who.int/iris/bitstream/handle/10665/39678/9241561211.pdf?sequence=1&isAllowed=y

  49. Barbone F, Rosolen V, Mariuz M, Parpinel M, Casetta A, Sammartano F, Ronfani L, Vecchi Brumatti L, Bin M, Castriotta L, Valent F, Little DL, Mazej D, Snoj Tratnik J, Miklavcic Visnjevec A, Sofianou K, Spiric Z, Krsnik M, Osredkar J, Neubauer D, Kodric J, Stropnik S, Prpic I, Petrovic O, Vlasic-Cicvaric I, Horvat M (2019) Prenatal mercury exposure and child neurodevelopment outcomes at 18 months: results from the Mediterranean PHIME cohort. Int J Hyg Environ Health 222(1):9–21. https://doi.org/10.1016/j.ijheh.2018.07.011

    Article  CAS  PubMed  Google Scholar 

  50. Järup L, Akesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238(3):201–208. https://doi.org/10.1016/j.taap.2009.04.020

    Article  CAS  PubMed  Google Scholar 

  51. Henderson FW, Reid HF, Morris R, Wang OL, Hu PC, Helms RW, Forehand L, Mumford J, Lewtas J, Haley NJ, Hammond SK (1989) Home air nicotine levels and urinary cotinine excretion in preschool children. Am Rev Respir Dis 140(1):197–201. https://doi.org/10.1164/ajrccm/140.1.197

    Article  CAS  PubMed  Google Scholar 

  52. Cherkani-Hassani A, Ghanname I, Mouane N (2017) Assessment of cadmium levels in human breast milk and the affecting factors: a systematic review, 1971-2014. Crit Rev Food Sci Nutr 57(11):2377–2391. https://doi.org/10.1080/10408398.2015.1057633

    Article  CAS  PubMed  Google Scholar 

  53. Kippler M, Hossain MB, Lindh C, Moore SE, Kabir I, Vahter M, Broberg K (2012) Early life low-level cadmium exposure is positively associated with increased oxidative stress. Environ Res 112:164–170

    Article  CAS  Google Scholar 

  54. Kippler M, Lonnerdal B, Goessler W, Ekstrom EC, Arifeen SE, Vahter M (2009) Cadmium interacts with the transport of essential micronutrients in the mammary gland-a study in rural Bangladeshi women. Toxicology 257(1–2):64–69. https://doi.org/10.1016/j.tox.2008.12.009

    Article  CAS  PubMed  Google Scholar 

  55. Al-Saleh I, Al-Rouqi R, Elkhatib R, Abduljabbar M, Al-Rajudi T (2017) Risk assessment of environmental exposure to heavy metals in mothers and their respective infants. Int J Hyg Environ Health 220(8):1252–1278. https://doi.org/10.1016/j.ijheh.2017.07.010

    Article  CAS  PubMed  Google Scholar 

  56. Godt J, Scheidig F, Grosse-Siestrup C, Esche V, Brandenburg P, Reich A, Groneberg DA (2006) The toxicity of cadmium and resulting hazards for human health. J Occup Med Toxicol 1:22. https://doi.org/10.1186/1745-6673-1-22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. D’Souza HS, Dsouza SA, Menezes G, Venkatesh T (2011) Diagnosis, evaluation, and treatment of lead poisoning in general population. Indian J Clin Biochem 26(2):197–201. https://doi.org/10.1007/s12291-011-0122-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Richter PA, Bishop EE, Wang J, Kaufmann R (2013) Trends in tobacco smoke exposure and blood lead levels among youths and adults in the United States: the National Health and Nutrition Examination Survey, 1999-2008. Prev Chronic Dis 10:E213. https://doi.org/10.5888/pcd10.130056

    Article  PubMed  PubMed Central  Google Scholar 

  59. Apostolou A, Garcia-Esquinas E, Fadrowski JJ, McLain P, Weaver VM, Navas-Acien A (2012) Secondhand tobacco smoke: a source of lead exposure in US children and adolescents. Am J Public Health 102(4):714–722. https://doi.org/10.2105/ajph.2011.300161

    Article  PubMed  PubMed Central  Google Scholar 

  60. Cherkani-Hassani A, Ghanname I, Benitez-Rexach AM, Mouane N (2019) Systematic review of the literature of factors affecting the exposure and the levels of lead in human breast milk. Rev Environ Contam Toxicol. https://doi.org/10.1007/398_2019_32

  61. Ettinger AS, Hu H, Hernandez-Avila M (2007) Dietary calcium supplementation to lower blood lead levels in pregnancy and lactation. J Nutr Biochem 18(3):172–178. https://doi.org/10.1016/j.jnutbio.2006.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Koyashiki GA, Paoliello MM, Tchounwou PB (2010) Lead levels in human milk and children’s health risk: a systematic review. Rev Environ Health 25(3):243–253

    Article  CAS  Google Scholar 

  63. Marques RC, Bernardi JV, Dorea JG, de Fatima RMM, Malm O (2014) Perinatal multiple exposure to neurotoxic (lead, methylmercury, ethylmercury, and aluminum) substances and neurodevelopment at six and 24 months of age. Environ Pollut 187:130–135. https://doi.org/10.1016/j.envpol.2014.01.004

    Article  CAS  PubMed  Google Scholar 

  64. Isaac CP, Sivakumar A, Kumar CR (2012) Lead levels in breast milk, blood plasma and intelligence quotient: a health hazard for women and infants. Bull Environ Contam Toxicol 88(2):145–149. https://doi.org/10.1007/s00128-011-0475-9

    Article  CAS  PubMed  Google Scholar 

  65. Leonhard MJ, Chang ET, Loccisano AE, Garry MR (2019) A systematic literature review of epidemiologic studies of developmental manganese exposure and neurodevelopmental outcomes. Toxicology 420:46–65. https://doi.org/10.1016/j.tox.2019.03.004

    Article  CAS  PubMed  Google Scholar 

  66. Snoj Tratnik J, Falnoga I, Mazej D, Kocman D, Fajon V, Jagodic M, Stajnko A, Trdin A, Slejkovec Z, Jeran Z, Osredkar J, Sesek-Briski A, Krsnik M, Kobal AB, Kononenko L, Horvat M (2019) Results of the first national human biomonitoring in Slovenia: trace elements in men and lactating women, predictors of exposure and reference values. Int J Hyg Environ Health 222(3):563–582. https://doi.org/10.1016/j.ijheh.2019.02.008

    Article  CAS  PubMed  Google Scholar 

  67. Chien LC, Han BC, Hsu CS, Jiang CB, You HJ, Shieh MJ, Yeh CY (2006) Analysis of the health risk of exposure to breast milk mercury in infants in Taiwan. Chemosphere 64(1):79–85. https://doi.org/10.1016/j.chemosphere.2005.11.059

    Article  CAS  PubMed  Google Scholar 

  68. Astolfi ML, Protano C, Schiavi E, Marconi E, Capobianco D, Massimi L, Ristorini M, Baldassarre ME, Laforgia N, Vitali M, Canepari S, Mastromarino P (2019) A prophylactic multi-strain probiotic treatment to reduce the absorption of toxic elements: in-vitro study and biomonitoring of breast milk and infant stools. Environ Int 130:104818. https://doi.org/10.1016/j.envint.2019.05.012

    Article  CAS  PubMed  Google Scholar 

  69. Lidsky TI, Schneider JS (2003) Lead neurotoxicity in children: basic mechanisms and clinical correlates. Brain 126(Pt 1):5–19. https://doi.org/10.1093/brain/awg014

    Article  PubMed  Google Scholar 

  70. Dorea JG (2019) Environmental exposure to low-level lead (Pb) co-occurring with other neurotoxicants in early life and neurodevelopment of children. Environ Res 177:108641. https://doi.org/10.1016/j.envres.2019.108641

    Article  CAS  PubMed  Google Scholar 

  71. Dorea JG (2019) Environmental exposure to low-level lead (Pb) co-occurring with other neurotoxicants in early life and neurodevelopment of children. Environ Res 177:108641 [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/31421445/

  72. Mitchell EJ, Frisbie SH, Roudeau S, Carmona A, Ortega R (2020) Estimating daily intakes of manganese due to breast milk, infant formulas, or young child nutritional beverages in the United States and France: comparison to sufficiency and toxicity thresholds. J Trace Elem Med Biol 62:126607. https://doi.org/10.1016/j.jtemb.2020.126607

    Article  CAS  PubMed  Google Scholar 

  73. EFSA, Panel on Dietetic Products NA (2013) Scientific opinion on dietary reference values for manganese. EFSA J 11(11):3419. https://doi.org/10.2903/j.efsa.2013.3419

    Article  CAS  Google Scholar 

  74. Stehle P, Stoffel-Wagner B, Kuhn KS (2016) Parenteral trace element provision: recent clinical research and practical conclusions. Eur J Clin Nutr 70(8):886–893. https://doi.org/10.1038/ejcn.2016.53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Erikson KM, Thompson K, Aschner J, Aschner M (2007) Manganese neurotoxicity: a focus on the neonate. Pharmacol Ther 113(2):369–377. https://doi.org/10.1016/j.pharmthera.2006.09.002

    Article  CAS  PubMed  Google Scholar 

  76. Tannenbaum LV (2005) A critical assessment of the ecological risk assessment process: a review of misapplied concepts. Integr Environ Assess Manag 1(1):66–72. https://doi.org/10.1897/IEAM_2004a-008.1

    Article  PubMed  Google Scholar 

  77. Xie J, Marano KM, Wilson CL, Liu H, Gan H, Xie F, Naufal ZS (2012) A probabilistic risk assessment approach used to prioritize chemical constituents in mainstream smoke of cigarettes sold in China. Regul Toxicol Pharmacol 62(2):355–362. https://doi.org/10.1016/j.yrtph.2011.10.017

    Article  CAS  PubMed  Google Scholar 

  78. Allen LH, Donohue JA, Dror DK (2018) Limitations of the evidence base used to set recommended nutrient intakes for infants and lactating women. Adv Nutr 9(suppl_1):295s–312s. https://doi.org/10.1093/advances/nmy019

    Article  PubMed  PubMed Central  Google Scholar 

  79. Aerts R, Van Overmeire I, Colles A, Andjelkovic M, Malarvannan G, Poma G, Den Hond E, Van de Mieroop E, Dewolf MC, Charlet F, Van Nieuwenhuyse A, Van Loco J, Covaci A (2019) Determinants of persistent organic pollutant (POP) concentrations in human breast milk of a cross-sectional sample of primiparous mothers in Belgium. Environ Int 131:104979. https://doi.org/10.1016/j.envint.2019.104979

    Article  CAS  PubMed  Google Scholar 

  80. Leotsinidis M, Alexopoulos A, Kostopoulou-Farri E (2005) Toxic and essential trace elements in human milk from Greek lactating women: association with dietary habits and other factors. Chemosphere 61(2):238–247. https://doi.org/10.1016/j.chemosphere.2005.01.084

    Article  CAS  PubMed  Google Scholar 

  81. Mead MN (2008) Contaminants in human milk: weighing the risks against the benefits of breastfeeding. Environ Health Perspect 116(10):A427–A434

    PubMed  Google Scholar 

  82. Goumenou M, Tsatsakis A (2019) Proposing new approaches for the risk characterisation of single chemicals and chemical mixtures: the source related hazard quotient (HQS) and hazard index (HIS) and the adversity specific hazard index (HIA). Toxicol Rep 6:632–636. https://doi.org/10.1016/j.toxrep.2019.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wilbur SB, Hansen H, Pohl H, Colman J, McClure P (2004) Using the ATSDR guidance manual for the assessment of joint toxic action of chemical mixtures. Environ Toxicol Pharmacol 18(3):223–230. https://doi.org/10.1016/j.etap.2003.03.001

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The principal author would like to acknowledge that this study was funded by King Abdulaziz City for Science and Technology (ARP-29-23) and supported by the King Faisal Specialist Hospital and Research Centre (RAC# 2171046 and RAC# 2080049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iman Al-Saleh.

Ethics declarations

Conflict of Interest

The authors reported no potential conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 109 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Saleh, I. Health Risk Assessment of Trace Metals Through Breast Milk Consumption in Saudi Arabia. Biol Trace Elem Res 199, 4535–4545 (2021). https://doi.org/10.1007/s12011-021-02607-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02607-3

Keywords

Navigation