Skip to main content
Log in

The Effect of Different Levels of Dietary Magnesium on Eggshell Quality and Laying Hen’s Performance

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This study aimed to investigate the effects of different levels of dietary magnesium (Mg) on eggshell quality and laying hen’s performance. Four dietary treatments including a commercial-type basal diet containing 3.19 g/kg Mg and three additional diets supplemented with 2, 4, or 6 g/kg magnesium oxide (MgO) to provide 4.03, 4.87, or 5.71 g/kg Mg were used in a completely randomized design. A total of 120 Bovans White layers at the age of 35 weeks were fed with dietary treatments for 8 weeks. Results indicated that increasing concentrations of Mg in the diets significantly increased hen-day egg production and feed intake (P < 0.05). Dietary Mg supplementation had no effect on egg weight, feed conversion ratio, and average daily weight gain. Eggshell weight, thickness, and strength were significantly increased by adding Mg to the diets (P < 0.05). Dietary treatments significantly increased yolk weight (P < 0.05) but decreased yolk color (P < 0.05). Albumen weight, Haugh unit, yolk shape, and egg shape index were similar among the dietary treatments. Eggshell Mg content (g/kg of dry matter) was significantly increased by the inclusion of Mg in the diets. In conclusion, the results of this study indicated that supplementation of Mg up to 5.71 g/kg diet improved eggshell quality and laying hen’s performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current research are available from the corresponding author on request.

References

  1. Leroy J (1926) Necessity of magnesium for growth of mice. CR Soc Biol 94:431–433

    Google Scholar 

  2. Kruse HD, Orent ER (1932) Studies on magnesium deficiency in animals. 1. Symptomatology resulting: from magnesium deprivation. J Biol Chem 96:519–539

    Article  Google Scholar 

  3. Altura BM (1991) Basic biochemistry and physiology of magnesium: a brief review. Magnes Trace Elem 10:167–171

    CAS  PubMed  Google Scholar 

  4. Swaminathan R (2003) Magnesium metabolism and its disorders. Clin Biochem Rev 24:47–66

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Cox AC, Sell JL (1967) Magnesium deficiency in the laying hen. Poult Sci 46:675–680. https://doi.org/10.3382/ps.0460675

    Article  CAS  Google Scholar 

  6. Stafford JEH, Edwards NA (1973) Magnesium metabolism in the laying fowl. Br Poult Sci 14:137–148. https://doi.org/10.1080/00071667308416006

    Article  CAS  PubMed  Google Scholar 

  7. Bain M, Nys Y, Dunn I (2016) Increasing persistency in lay and stabilising egg quality in longer laying cycles. What are the challenges? Br Poult Sci 57:330–338. https://doi.org/10.1080/00071668.2016.1161727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Preisinger R (2018) Innovative layer genetics to handle global challenges in egg production. Br Poult Sci 59:1–6. https://doi.org/10.1080/00071668.2018.1401828

    Article  CAS  PubMed  Google Scholar 

  9. Pavlovski Z, Skrbic Z, Lukic M, Vitorovic D, Lilic S, Petricevic V (2012) Shell quality-everlasting problem in the today poultry science. Biotechnol Anim Husbandry 28:393–404. https://doi.org/10.2298/BAH1203393P

    Article  Google Scholar 

  10. Waddell AL, Board RG, Scott VD, Tullett SG (1989) Influence of dietary magnesium content on laying performance and egg shell magnesium content in the domestic hen. Br Poult Sci 30:865–876. https://doi.org/10.1080/00071668908417213

    Article  CAS  Google Scholar 

  11. Waddell AL, Board RG, Scott VD, Tullett SG (1991) Role of magnesium in egg shell formation in the domestic hen. Br Poult Sci 32:853–864. https://doi.org/10.1080/00071669108417410

    Article  CAS  PubMed  Google Scholar 

  12. Shastak Y, Rodehutscord M (2015) A review of the role of magnesium in poultry nutrition. World’s Poult Sci J 71:125–137. https://doi.org/10.1017/S0043933915000112

    Article  Google Scholar 

  13. Edwards HM, Nugara D (1968) Magnesium requirement of the laying hen. Poult Sci 47:963–966. https://doi.org/10.3382/ps.0470963

    Article  CAS  PubMed  Google Scholar 

  14. McWard GW (1967) Magnesium tolerance of the growing and laying chicken. Br Poult Sci 8:91–99. https://doi.org/10.1080/00071666708415655

    Article  CAS  Google Scholar 

  15. National Research Council (1994) Nutrient requirements of poultry. National Academy Press, Chapter 2. Nutrient requirements of chickens, Washington, p 23

    Google Scholar 

  16. Applegate TJ, Angel R (2014) Nutrient requirements of poultry publication: history and need for an update. J Appl Poult Res 23:567–575. https://doi.org/10.3382/japr.2014-00980

    Article  CAS  Google Scholar 

  17. Chesters JK, Arthur JR (1988) Early biochemical defects caused by dietary trace element deficiencies. Nutr Res Rev 1:39–56. https://doi.org/10.1079/NRR19880006

    Article  CAS  PubMed  Google Scholar 

  18. Gaal KK, Safar O, Gulyas L, Stadler P (2004) Magnesium in animal nutrition. J Am Coll Nutr 23:754–757. https://doi.org/10.1080/07315724.2004.10719423

    Article  Google Scholar 

  19. McGlone J (2010) Guide for the care and use of agricultural animals in research and teaching. Federation of Animal Science Societies

  20. Eisen EJ, Bohren BB, McKean HE (1962) The Haugh unit as a measure of egg albumen quality. Poult Sci 41:1461–1468. https://doi.org/10.3382/ps.0411461

    Article  Google Scholar 

  21. Institute SAS (2001) Procedures Guide, Version 9. SAS Institute, Inc, Cary

    Google Scholar 

  22. Skrivan M, Englmaierova M, Marounek M, Skrivanova V, Taubner T, Vit T (2016) Effect of dietary magnesium, calcium, phosphorus, and limestone grain size on productive performance and eggshell quality of hens. Czech J Anim Sci 61:473–480. https://doi.org/10.17221/3/2016-CJAS

    Article  CAS  Google Scholar 

  23. Ding ST, Shen TF (1992) The effect of dietary magnesium level on the eggshell quality in laying Tsaiya duck and Leghorn hen. Asian Aust J Anim Sci 5:217–224. https://doi.org/10.5713/ajas.1992.217

    Article  Google Scholar 

  24. Kim CH, Paik IK, Kil DY (2013) Effects of increasing supplementation of magnesium in diets on productive performance and eggshell quality of aged laying hens. Biol Trace Elem Res 151:38–42. https://doi.org/10.1007/s12011-012-9537-z

    Article  CAS  PubMed  Google Scholar 

  25. Seo YM, Shin KS, Rhee AR, Chi YS, Han J, Paik IK (2010) Effects of dietary Fe-soy proteinate and MgO on egg production and quality of eggshell in laying hens. Asian-Aust J Anim Sci 23:1043–1048. https://doi.org/10.5713/ajas.2010.10076

    Article  CAS  Google Scholar 

  26. Hossain SM, Bertechini AG (1998) Effects of varying levels of magnesium and available phosphorus on performance of layers. Anim. Feed Sci Technol 71:363–368. https://doi.org/10.1016/S0377-8401(97)00152-1

    Article  CAS  Google Scholar 

  27. Bunce GE, Reeves PG, Oba TS, Sauberlich HE (1963) Influence of the dietary protein level on the magnesium requirement. J Nutr 79:220–226. https://doi.org/10.1093/jn/79.2.220

    Article  CAS  PubMed  Google Scholar 

  28. Edwards HM Jr, Fuller HL, Hess CW (1960) The effect of environment on chick growth. J Nutr 70:302–306. https://doi.org/10.1093/jn/70.3.302

    Article  PubMed  Google Scholar 

  29. Atteh JO, Leeson S (1983) Influence of increasing dietary calcium and magnesium levels on performance, mineral metabolism, and egg mineral content of laying hens. Poult Sci 62:1261–1268. https://doi.org/10.3382/ps.0621261

    Article  CAS  PubMed  Google Scholar 

  30. Nugara D, Edwards HM (1963) Influence of dietary calcium and phosphorus levels on the magnesium requirement of the chick. J Nutr 80:181–184. https://doi.org/10.1093/jn/80.2.181

    Article  CAS  PubMed  Google Scholar 

  31. Pasternak K, Kocot J, Horecka A (2010) Biochemistry of magnesium. J Elem 15:601–616

    Google Scholar 

  32. Lin CY, Tsai PS, Hung YC, Huang CJ (2010) L-type calcium channels are involved in mediating the anti-inflammatory effects of magnesium sulphate. Br J Anaesth 104:44–51. https://doi.org/10.1093/bja/aep336

    Article  CAS  PubMed  Google Scholar 

  33. Liu YX, Guo YM, Wang Z (2007) Effect of magnesium on reactive oxygen species production in the thigh muscles of broiler chickens. Br poult sci 48:84–89. https://doi.org/10.1080/00071660601148187

    Article  CAS  PubMed  Google Scholar 

  34. Sahin N, Onderci M, Sahin K, Cikim G, Kucuk O (2005) Magnesium proteinate is more protective than magnesium oxide in heat-stressed quail. The J Nutr 135:1732–1737. https://doi.org/10.1093/jn/135.7.1732

    Article  CAS  PubMed  Google Scholar 

  35. Donoghue DJ, Krueger WF, Donoghue AM, Byrd JA, Ali DH, El-Halawani ME (1990) Magnesium-aspartate-hydrochloride reduces weight loss in heat-stressed laying hens. Poult Sci 69:1862–1868

    Article  CAS  PubMed  Google Scholar 

  36. Yang Y, Gao M, Nie W, Yuan J, Zhang B, Wang Z, Wu Z (2012) Dietary magnesium sulfate supplementation protects heat stress-induced oxidative damage by restoring the activities of anti-oxidative enzymes in broilers. Biologic Trace Elem Res 146:53–58. https://doi.org/10.1007/s12011-011-9210-y

    Article  CAS  Google Scholar 

  37. Mehring AL, Johnson D (1965) Magnesium in limestones for laying chickens. Poult Sci 44:853–860. https://doi.org/10.3382/ps.0440853

    Article  PubMed  Google Scholar 

  38. Stillmak SJ, Sunde ML (1971) The use of high magnesium limestone in the diet of the laying hen 2. Calcium and magnesium availability. Poult Sci 50:564–572. https://doi.org/10.3382/ps.0500553

    Article  CAS  Google Scholar 

  39. Balnave D, El-Khatib NU, Zhang D (1992) Calcium and carbonate supply in the shell gland of hens laying eggs with strong and weak shells and during and after a rest from lay. Poult Sci 71:2035–2040. https://doi.org/10.3382/ps.0712035

    Article  CAS  PubMed  Google Scholar 

  40. Coty WA, Mc Conkey CL (1982) A high-affinity calcium-stimulated ATPase activity in the hen oviduct shell gland. Arch. Biochem Biophys 219:444–453. https://doi.org/10.1016/0003-9861(82)90176-X

    Article  CAS  Google Scholar 

  41. Ehrenspeck G, Schraer H, Schraer R (1967) Some metabolic aspects of calcium movement across the isolated avian shell gland. Exper Biol Med 126:392–395. https://doi.org/10.3181/00379727-126-32455

    Article  CAS  Google Scholar 

  42. Pearson TW, Goldner AM (1974) Calcium transport across avian uterus. II. Effects of inhibitors and nitrogen. Am J Physiol Legacy Content 227:465–468. https://doi.org/10.1152/ajplegacy.1974.227.2.465

    Article  CAS  Google Scholar 

  43. Apell HJ (2004) How do P-type ATPases transport ions? Bioelectrochem 63:149–156. https://doi.org/10.1016/j.bioelechem.2003.09.021

    Article  CAS  Google Scholar 

  44. Parker SL, Lindsay LA, Herbert JF, Murphy CR, Thompson MB (2008) Expression and localization of Ca2+-ATPase in the uterus during the reproductive cycle of king quail (Coturnix chinensis) and zebra finch (Poephila guttata). Comp Biochem Physiol 149:30–35. https://doi.org/10.1016/j.cbpa.2007.09.014

    Article  CAS  Google Scholar 

  45. Yamada M (1973) Biochemical studies on the shell gland of Japanese Quail, Coturnix coturnix japonica 1. Effect of a developing egg location on activity of glycolytic and other enzymes in the shell gland. Poult Sci 52:1375–1382

    Article  CAS  PubMed  Google Scholar 

  46. Pike JW, Alvarado RH (1975) Ca2+- Mg2+−activated ATPase in the shell gland of Japanese quail (Coturnix coturnix japonica). Camp Biochem Physiol 51:119–125

    CAS  Google Scholar 

  47. Castaldo DJ, Maurice DV (1990) Shell gland adenosine triphosphatase in hens producing strong and weak egg shells. Br Poult Sci 31:225–229. https://doi.org/10.1080/00071669008417250

    Article  CAS  PubMed  Google Scholar 

  48. Yamamoto T, Ozawa H, Nagai H (1985) Histochemical studies of Ca-ATPase, succinate and NAD+-dependent isocitrate dehydrogenases in the shell gland of laying Japanese quails: with special reference to calcium-transporting cells. Histochem 83:221–226. https://doi.org/10.1007/BF00953987

    Article  CAS  Google Scholar 

  49. Lundholm CE (1985) Relation between Ca2+ uptake and ATPase activity in the particulate fractions of the eggshell gland mucosa of the domestic fowl and duck. Comp Biochem Physiol 81:787–799. https://doi.org/10.1016/0300-9629(85)90909-0

    Article  CAS  Google Scholar 

  50. Nys YD, De Laage X (1984) Effects of suppression of eggshell calcification and of 1, 25(OH)2D3 on Mg2+, Ca2+ and Mg2+ HCO3− ATPase, alkaline phosphatase, carbonic anhydrase and CaBP levels-I. The laying hen uterus. Camp Biochem Physiol 78:833–838. https://doi.org/10.1016/0300-9629(84)90642-x

    Article  CAS  Google Scholar 

  51. Lundholm CE (1982) Effect of p-p′-DDE administered in vivo and in vitro on Ca2+ binding and Ca2+-Mg2+-ATPase activity in egg shell gland mucosa of ducks. Basic Clinic Pharmacol Toxicol 50:121–129. https://doi.org/10.1111/j.1600-0773.1982.tb00953.x

    Article  CAS  Google Scholar 

  52. Lundholm CE (1984) Ca content of duck eggshell gland mucosa homogenate and the rate of Ca2+ binding to its subcellular fractions during and after the formation of the eggshell. Comp Biochem Physiol 77:655–663. https://doi.org/10.1016/0305-0491(84)90293-1

    Article  Google Scholar 

  53. Silyn-Roberts H Sharp RM (1986) Crystal growth and the role of the organic network in eggshell biomineralization. Proceedings of the Royal Society of London B: Biolog Sci PP 303–324

  54. Bain MM (1997) A reinterpretation of eggshell strength. In: Solomon SE (ed) Egg and eggshell quality. Manson Publishing, London, pp 131–142

    Google Scholar 

  55. Rodriguez-Navarro A, Kalin O, Nys Y, Garcia-Ruiz JM (2002) Influence of the microstructure on the shell strength of eggs laid by hens of different ages. Br Poult Sci 43:395–403. https://doi.org/10.1080/00071660120103675

    Article  CAS  PubMed  Google Scholar 

  56. Yang Y, Wu Z, CZhang Y, Qiao J, Gao M, Yuan J, Nie W, Guo Y (2006) Magnesium deficiency enhances hydrogen peroxide production and oxidative damage in chick embryo hepatocyte in vitro. Biomet 19:71–81. https://doi.org/10.1007/s10534-005-6898-1

    Article  CAS  Google Scholar 

Download references

Funding

This study was approved and supported by the Isfahan University of Technology, Isfahan, Iran (grant no: 9306214).

Author information

Authors and Affiliations

Authors

Contributions

Mohammad Mahdi Belkameh: conceptualization, data collection, writing, and software; Mohammad Sedghi: supervision, data curation, and methodology and editing; and Arash Azarfar: reviewing and editing.

Corresponding author

Correspondence to Mohammad Sedghi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

This experiment was conducted according to the comprehensive guide of animal welfare adopted by the FASS [19]. All animal care and experimental procedures were approved by the animal policy and welfare committee of the Isfahan University of Technology.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Code Availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belkameh, M.M., Sedghi, M. & Azarfar, A. The Effect of Different Levels of Dietary Magnesium on Eggshell Quality and Laying Hen’s Performance. Biol Trace Elem Res 199, 1566–1573 (2021). https://doi.org/10.1007/s12011-020-02259-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02259-9

Keywords

Navigation