Silver Nanoparticles Synthesized Using Carica papaya Leaf Extract (AgNPs-PLE) Causes Cell Cycle Arrest and Apoptosis in Human Prostate (DU145) Cancer Cells


Treatment of cancer has been limited by the poor efficacy and toxicity profiles of available drugs. There is a growing demand to develop alternative approaches to combat cancer such as use of nano-formulation-based drugs. Here, we report biosynthesis and characterization of silver nanoparticles (AgNPs) with papaya leaf extract (PLE) and its anti-cancer properties against different human cancer cells. Purified nanoparticles were characterized by standard techniques, such as TEM, STM, SEM, EDS, XRD, and FTIR. Furthermore, cytotoxic activity of AgNPs-PLE was carried out against different human cancer cells and non-tumorigenic human keratinocytes cells. AgNPs-PLE when compared with AgNPs-citric acid or PLE showed better efficacy against cancer cells and was also relatively less toxic to normal cells. Treatment of DU145 cells with AgNPs-PLE (0.5–5.0 μg/ml) for 24–48 h lowered total cell number by 24–36% (P < 0.05). Inhibition of cell growth was linked with arrest of cell cycle at G2/M phase at 24 h, while G1 and G2/M phase arrests at 48 h. ROS production was observed at earlier time points in presence of AgNPs-PLE, suggesting its role behind apoptosis in DU145 cells. Induction of apoptosis (57%) was revealed by AO/EB staining in DU145 cells along with induction of Bax, cleaved caspase-3, and cleaved PARP proteins. G1-S phase cell cycle check point marker, cyclin D1 was down-regulated along with an increase in cip1/p21 and kip1/p27 tumor suppressor proteins by AgNPs-PLE. These findings suggest the anti-cancer properties of AgNPs-PLE.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69:7–34

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Stewart B, Wild CP (2015) World cancer report 2014 world

  3. 3.

    Barabadi H, Hosseini O, Kamali KD, Shoushtari FJ, Rashedi M, Haghi-Aminjan H, Saravanan M (2020) Emerging theranostic silver nanomaterials to combat lung cancer: a systematic review. J Clust Sci 31:1–10

    CAS  Google Scholar 

  4. 4.

    Vahidi H, Barabadi H, Saravanan M (2020) Emerging selenium nanoparticles to combat cancer: a systematic review. J Clust Sci 31:301–309

    CAS  Google Scholar 

  5. 5.

    Barabadi H, Mahjoub MA, Tajani B, Ahmadi A, Junejo Y, Saravanan M (2019) Emerging theranostic biogenic silver nanomaterials for breast cancer: a systematic review. J Clust Sci 30:259–279

    CAS  Google Scholar 

  6. 6.

    Barabadi H, Kamali KD, Shoushtari FJ, Tajani B, Mahjoub MA, Alizadeh A, Saravanan M (2019) Emerging theranostic silver and gold nanomaterials to combat prostate cancer: a systematic review. J Clust Sci 30:1375–1382.

    CAS  Article  Google Scholar 

  7. 7.

    Palumbo MO, Kavan P, Miller WH Jr, Panasci L, Assouline S, Johnson N, Cohen V, Patenaude F, Pollak M, Jagoe RT, Batist G (2013) Systemic cancer therapy: achievements and challenges that lie ahead. Front Pharmacol 4:1–9

    CAS  Google Scholar 

  8. 8.

    Casanovas O (2012) Limitations of therapies exposed. Nature 484:44–46

    CAS  PubMed  Google Scholar 

  9. 9.

    Coates A, Abraham S, Kaye SB, Sowerbutts T, Frewin C, Fox RM, Tattersall MH (1983) On the receiving end--patient perception of the side-effects of cancer chemotherapy. Eur J Cancer Clin Oncol 19:203–208

    CAS  PubMed  Google Scholar 

  10. 10.

    Szakács G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5:219–234

    PubMed  Google Scholar 

  11. 11.

    Cai Y, Luo Q, Sun M, Corke H (2004) Antioxidant activity and phenolic compounds of112 traditional Chinese medicinal plants associated with anticancer. Life Sci 74(17):2157–2184

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Aqil F, Munagala R, Jeyabalan J, Vadhanam MV (2013) Bioavailability of phytochemicals and its enhancement by drug delivery systems. Cancer Lett 334(1):133–141

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Barabadi H, Tajani B, Moradi M, Kamali KD, Meena R, Honary S, Mahjoub MA, Saravanan M (2019) Penicillium family as emerging nanofactory for biosynthesis of green nanomaterials: a journey into the world of microorganisms. J Clust Sci 30:843–856

    CAS  Google Scholar 

  14. 14.

    Kanagamani K, Muthukrishnan P, Shankar K, Kathiresan A, Barabadi H, Saravanan M (2019) Antimicrobial, cytotoxicity and photocatalytic degradation of norfloxacin using Kleinia grandiflora mediated silver nanoparticles. J Clust Sci 30(6):1415–1424

    CAS  Google Scholar 

  15. 15.

    Rehman S, Farooq R, Jermy R, Asiri SM, Ravinayagam V, Jindan RA, Alsalem Z, Shah MA, Reshi Z, Sabit H, Khan FA (2020) A Wild Fomes fomentarius for biomediation of one pot synthesis of titanium oxide and silver nanoparticles for antibacterial and anticancer application. Biomolecules 10(4):1–15

    Google Scholar 

  16. 16.

    Subbaiya R, Saravanan M, Priya AR, Shankar KR, Selvam M, Ovais M, Balajee R, Barabadi H (2017) Biomimetic synthesis of silver nanoparticles from Streptomyces atrovirens and their potential anticancer activity against human breast cancer cells. IET Nanobiotechnol 11(8):965–972

    PubMed  Google Scholar 

  17. 17.

    Rauwel P, Küünal S, Ferdov S, Rauwel E (2015) A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Adv Mater Sci Eng 2015:1–9

    Google Scholar 

  18. 18.

    Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedecine 6(2):257–262

    CAS  Google Scholar 

  19. 19.

    Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 84(2):151–157

    CAS  Google Scholar 

  20. 20.

    Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M (2004) Biologicalsynthesis of triangular gold nanoprisms. Nat Mater 3(7):482–488

    CAS  PubMed  Google Scholar 

  21. 21.

    Chauhan A, Zubair S, Sherwani A, Owais M (2012) Aloe vera induced biomimetic assemblage of nucleobase into nanosized particles. PLoS One 7(3):e32049

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Honary S, Barabadi H, Ebrahimi P, Naghibi F, Alizadeh A (2015) Development and optimization of biometal nanoparticles by using mathematical methodology: a microbial approach. JNanoR 30:106–115

    CAS  Google Scholar 

  23. 23.

    Boomi P, Poorani GP, Palanisamy S, Selvam S, Ramanathan G, Ravikumar S, Barabadi H, Prabu HG, Jeyakanthan J, Saravanan M (2019) Evaluation of antibacterial and anticancer potential of polyaniline-bimetal nanocomposites synthesized from chemical reduction method. J Clust Sci 30(3):715–726

    CAS  Google Scholar 

  24. 24.

    Barabadi H, Alizadeh Z, Rahimi MT, Barac A, Maraolo AE, Robertson LJ, Masjedi A, Shahrivar F, Ahmadpour E (2019) Nanobiotechnology as an emerging approach to combat malaria: a systematic review. Nanomedicine 18:221–233

    CAS  PubMed  Google Scholar 

  25. 25.

    Prabhu D, Arulvasu C, Babu G, Manikandan R, Srinivasan P (2013) Biologically synthesized green silver nanoparticles from leaf extract of Vitex negundo L. induce growth-inhibitory effect on human colon cancer cell line HCT15. Process Biochem 48(2):317–324

    CAS  Google Scholar 

  26. 26.

    Jeyaraj M, Sathishkumar G, Sivanandhan G, MubarakAli D, Rajesh M, Arun R, Kapildev G, Manickavasagam M, Thajuddin N, Premkumar K, Ganapathi A (2013) Biogenic silver nanoparticles for cancer treatment: an experimental report. Colloids Surf B: Biointerfaces 106:86–92

    CAS  PubMed  Google Scholar 

  27. 27.

    Lokina S, Stephen A, Kaviyarasan V, Arulvasu C, Narayanan V (2014) Cytotoxicity and antimicrobial activities of green synthesized silver nanoparticles. Eur J Med Chem 76:256–263

    CAS  PubMed  Google Scholar 

  28. 28.

    Ulug B, Haluk Turkdemir M, Cicek A, Mete A (2015) Role of irradiation in the greensynthesis of silver nanoparticles mediated by fig (Ficus carica) leaf extract. Spectrochim Acta A Mol Biomol Spectrosc 135:153–161

    CAS  PubMed  Google Scholar 

  29. 29.

    Li L, Sun J, Li X, Zhang Y, Wang Z, Wang C, Dai J, Wang Q (2012) Controllable synthesis of monodispersed silver nanoparticles as standards for quantitative assessment of their cytotoxicity. Biomaterials 33(6):1714–1721

    CAS  PubMed  Google Scholar 

  30. 30.

    Foldbjerg R, Dang DA, Autrup H (2011) Cytotoxicity and genotoxicity of silvernanoparticles in the human lung cancer cell line, A549. Arch Toxicol 85(7):743–750

    CAS  PubMed  Google Scholar 

  31. 31.

    Palaniappan P, Sathishkumar G, Sankar R (2015) Fabrication of nano-silver particles using Cymodocea serrulata and its cytotoxicity effect against human lung cancer A549 cells line. Spectrochim Acta A Mol Biomol Spectrosc 138:885–890

    CAS  PubMed  Google Scholar 

  32. 32.

    Vivek R, Thangam R, Muthuchelian K, Gunasekaran P, Kaveri K, Kannan S (2012) Green biosynthesis of silver nanoparticles from Annona squamosa leaf extract and its in vitro cytotoxic effect on MCF-7 cells. Process Biochem 47(12):2405–2410

    CAS  Google Scholar 

  33. 33.

    Jeyaraj M, Rajesh M, Arun R, MubarakAli D, Sathishkumar G, Sivanandhan G, Dev GK, Manickavasagam M, Premkumar K, Thajuddin N, Ganapathi A (2013) An investigation on the cytotoxicity and caspase-mediated apoptotic effect of biologicallysynthesized silver nanoparticles using Podophyllum hexandrum on human cervicalcarcinoma cells. Colloids Surf B: Biointerfaces 102:708–717

    CAS  PubMed  Google Scholar 

  34. 34.

    Singh G, Babele PK, Shahi SK, Sinha RP, Tyagi MB, Kumar A (2014) Green synthesis of silver nanoparticles using cell extracts of Anabaena doliolum and screening of its antibacterial and antitumor activity. J Microbiol Biotechnol 24(10):1354–1367

    CAS  PubMed  Google Scholar 

  35. 35.

    Guo D, Dou D, Ge L, Huang Z, Wang L, Nb G (2015) A caffeic acid mediated facile synthesis of silver nanoparticles with powerful anti-cancer activity. Colloids Surf B: Biointerfaces 1(134):229–234

    Google Scholar 

  36. 36.

    Barabadi H, Alizadeh A, Ovais M, Ahmadi A, Shinwari ZK, Saravanan M (2018) Efficacy of green nanoparticles against cancerous and normal cell lines: a systematicreview and meta-analysis. IET Nanobiotechnol 12(4):377–391

    PubMed  Google Scholar 

  37. 37.

    He Y, Du Z, Ma S, Cheng S, Jiang S, Liu Y, Li D, Huang H, Zhang K, Zheng X (2016) Biosynthesis, antibacterial activity and anticancer effects against prostate cancer (PC-3) cells of silver nanoparticles using Dimocarpus Longan Lour. PeelExtract. Nanoscale Res Lett 11(1):300

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Otsuki N, Dang NH, Kumagai E, Kondo A, Iwata S, Morimoto C (2010) Aqueous extract ofCarica papaya leaves exhibits anti-tumor activity and immunomodulatory effects. J Ethnopharmacol 127(3):760–767

    PubMed  Google Scholar 

  39. 39.

    Nguyen TT, Parat MO, Hodson MP, Pan J, Shaw PN, Hewavitharana AK (2015) Chemical characterization and in vitro cytotoxicity on squamous cell carcinoma cells of Carica papaya leaf extracts. Toxins (Basel) 8(1):7

    Google Scholar 

  40. 40.

    Banala RR, Nagati VB, Karnati PR (2015) Green synthesis and characterization of Carica papaya leaf extract coated silver nanoparticles through X-ray diffraction, electron microscopy and evaluation of bactericidal properties. Saudi J Biol Sci 22(5):637–644

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Pandian AM, Karthikeyan C, Rajasimman M, Dinesh MG (2015) Synthesis of silver nanoparticle and its application. Ecotoxicol Environ Saf 121:211–217

    CAS  PubMed  Google Scholar 

  42. 42.

    Mishra A, Sardar M (2015) Cellulase assisted synthesis of nano-silver and gold: application as immobilization matrix for biocatalysis. Int J Biol Macromol 77:105–113

    CAS  PubMed  Google Scholar 

  43. 43.

    Dong F, Valsami-Jones E, Kreft JU (2016) New, rapid method to measure dissolved silver concentration in silver nanoparticle suspensions by aggregation combined with centrifugation. J Nanopart Res 18(9):259

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Mishra A, Kaushik NK, Sardar M, Sahal D (2013) Evaluation of antiplasmodial activity of green synthesized silver nanoparticles. Colloids Surf B: Biointerfaces 111:713–718

    CAS  PubMed  Google Scholar 

  45. 45.

    Singh DP, Gadi R, Mandal TK (2011) Characterization of particulate-bound polycyclic aromatic hydrocarbons and trace metals composition of urban air in Delhi, India. Atmos Environ 45(40):7653–7663

    CAS  Google Scholar 

  46. 46.

    Nambiar D, Prajapati V, Agarwal R, Singh RP (2013) In vitro and in vivo anticancerefficacy of silibinin against human pancreatic cancer BxPC-3 and PANC-1 cells. Cancer Lett 334(1):109–117

    CAS  PubMed  Google Scholar 

  47. 47.

    Prajapati V, Kale RK, Singh RP (2015) Silibinin combination with arsenic strongly inhibits survival and invasiveness of human prostate carcinoma cells. Nutr Cancer 67(4):647–658

    CAS  PubMed  Google Scholar 

  48. 48.

    Kumar K, Mishra JPN, Singh RP (2020) Usnic acid induces apoptosis in human gastriccancer cells through ROS generation and DNA damage and causes up-regulation ofDNA-PKcs and γ-H2A.X phosphorylation. Chem Biol Interact 315:108898

    CAS  PubMed  Google Scholar 

  49. 49.

    Raju J, Patlolla JM, Swamy MV, Rao CV (2004) Diosgenin, a steroid saponin of Trigonella foenum graecum (fenugreek), inhibits azoxymethane-induced aberrant crypt foci formation in F344 rats and induces apoptosis in HT-29 human colon cancer cells. Cancer Epidemiol Biomark Prev 13(8):1392–1398

    CAS  Google Scholar 

  50. 50.

    Shyanti RK, Sehrawat A, Singh SV, Mishra JPN, Singh RP (2017) Zerumbone modulatesCD1d expression and lipid antigen presentation pathway in breast cancer cells. Toxicol in Vitro 44:74–84

    CAS  PubMed  Google Scholar 

  51. 51.

    Verma A, Mehata MS (2016) Controllable synthesis of silver nanoparticles using Neem leaves and their antimicrobial activity. J Radiat Res Appl Sci 9(1):109–115

    CAS  Google Scholar 

  52. 52.

    Tripathy A, Raichur AM, Chandrasekaran N, Prathna TC, Mukherjee A (2010) Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachta indica (Neem) leaves. J Nanopart Res 12(1):237–246

    CAS  Google Scholar 

  53. 53.

    Pimprikar PS, Joshi SS, Kumar AR, Zinjarde SS, Kulkarni SK (2009) Influence ofbiomass and gold salt concentration on nanoparticle synthesis by the tropicalmarine yeast Yarrowia lipolytica NCIM 3589. Colloids Surf B: Biointerfaces 74(1):309–316

    CAS  PubMed  Google Scholar 

  54. 54.

    Roopan SM, Madhumitha G, Rahuman AA, Kamaraj C, Bharathi A, Surendra TV (2013) Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity. Ind Crop Prod 43:631–635

    CAS  Google Scholar 

  55. 55.

    Banerjee P, Satapathy M, Mukhopahayay A, Das P (2014) Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresour Bioprocess 1(1):1-10

    Google Scholar 

  56. 56.

    Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, andbimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275(2):496–502

    CAS  PubMed  Google Scholar 

  57. 57.

    Gan PP, Ng SH, Huang Y, Li SF (2012) Green synthesis of gold nanoparticles usingpalm oil mill effluent (POME): a low-cost and eco-friendly viable approach. Bioresour Technol 113:132–135

    CAS  PubMed  Google Scholar 

  58. 58.

    Kathiravan V, Ravi S, Ashokkumar S, Velmurugan S, Elumalai K, Khatiwada CP (2015) Green synthesis of silver nanoparticles using Croton sparsiflorus morong leaf extract and their antibacterial and antifungal activities. Spectrochim Acta A Mol Biomol Spectrosc 139:200–205

    CAS  PubMed  Google Scholar 

  59. 59.

    Maddinedi SB, Mandal BK, Patil SH, Andhalkar VV, Ranjan S, Dasgupta N (2017) Diastase induced green synthesis of bilayered reduced graphene oxide and itsdecoration with gold nanoparticles. J Photochem Photobiol B 166:252–258

    CAS  PubMed  Google Scholar 

  60. 60.

    Sabarwal A, Agarwal R, Singh RP (2017) Fisetin inhibits cellular proliferation and induces mitochondria-dependent apoptosis in human gastric cancer cells. Mol Carcinog 56(2):499–514

    CAS  PubMed  Google Scholar 

  61. 61.

    Salunke BK, Shin J, Sawant SS, Alkotaini B, Lee S, Kim BS (2014) Rapid biological synthesis of silver nanoparticles using Kalopanax pictus plant extract and their antimicrobial activity. Korean J Chem Eng 31(11):2035–2040

    CAS  Google Scholar 

  62. 62.

    Maddinedi SB, Mandal BK, Anna KK (2017) Tyrosine assisted size controlled synthesis of silver nanoparticles and their catalytic, in-vitro cytotoxicity evaluation. Environ Toxicol Pharmacol 51:23–29

    CAS  PubMed  Google Scholar 

  63. 63.

    Barabadi H, Vahidi H, Kamali KD, Rashedi M, Hosseini O, Ghomi AR, Saravanan M (2020) Emerging theranostic silver nanomaterials to combat colorectal cancer: a systematic review. J Clust Sci 31:311–321

    CAS  Google Scholar 

  64. 64.

    Barabadi H, Najafi M, Samadian H, Azarnezhad A, Vahidi H, Mahjoub MA, KoohiyanM AA (2015) A systematic review of the genotoxicity and antigenotoxicity of biologically synthesized metallic nanomaterials: are green nanoparticles safe enough for clinical marketing? Medicina (Kaunas) 55(8):439

    Google Scholar 

  65. 65.

    Mortezaee K, Najafi M, Samadian H, Barabadi H, Azarnezhad A, Ahmadi A (2019) Redox interactions and genotoxicity of metal-based nanoparticles: a comprehensive review. Chem Biol Interact 312:108814

    CAS  PubMed  Google Scholar 

  66. 66.

    Akhtar MJ, Alhadlaq HA, Alshamsan A, Majeed Khan MA, Ahamed M (2015) Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells. Sci Rep 5:13876

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Krishna KL, Paridhavi M, Patel JA (2008) Review on nutritional, medicinal and pharmacological properties of Papaya (Carica papaya Linn.). Nat Prod Radiance 7(4):364–373 

    Google Scholar 

  68. 68.

    Rodríguez-León E, Iñiguez-Palomares R, Navarro RE, Herrera-Urbina R, Tánori J, Iñiguez-Palomares C, Maldonado A (2013) Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus extracts). Nanoscale Res Lett 8(1):318

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Abreu Velez AM, Howard MS (2015) Tumor-suppressor genes, cell cycle regulatory checkpoints, and the skin. N Am J Med Sci 7(5):176–188

    PubMed  Google Scholar 

  70. 70.

    Li S, Wang C, Yu X, Wu H, Hu J, Wang S, Ye Z (2017) miR-3619-5p inhibits prostate cancer cell growth by activating CDKN1A expression. Oncol Rep 37(1):241–248

    PubMed  Google Scholar 

  71. 71.

    Yim D, Singh RP, Agarwal C, Lee S, Chi H, Agarwal R (2005) A novel anticancer agent, decursin, induces G1 arrest and apoptosis in human prostate carcinoma cells. Cancer Res 65(3):1035–1044

    CAS  PubMed  Google Scholar 

  72. 72.

    Roy S, Gu M, Ramasamy K, Singh RP, Agarwal C, Siriwardana S, Sclafani RA, Agarwal R (2009) p21/Cip1 and p27/Kip1 are essential molecular targets of inositolhexaphosphate for its antitumor efficacy against prostate cancer. Cancer Res 69(3):1166–1173

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Roy S, Singh RP, Agarwal C, Siriwardana S, Sclafani R, Agarwal R (2008) Downregulation of both p21/Cip1 and p27/Kip1 produces a more aggressive prostate cancer phenotype. Cell Cycle 7(12):1828–1835

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Dewaele M, Maes H, Agostinis P (2010) ROS-mediated mechanisms of autophagystimulation and their relevance in cancer therapy. Autophagy 6(7):838–854

    CAS  PubMed  Google Scholar 

  75. 75.

    Singh RP, Tyagi A, Sharma G, Mohan S, Agarwal R (2008) Oral silibinin inhibits in vivo human bladder tumor xenograft growth involving down-regulation of survivin. Clin Cancer Res 14(1):300–308

    CAS  PubMed  Google Scholar 

  76. 76.

    Jaiswal A, Sabarwal A, Mishra JP, Singh RP (2018) Plumbagin induces ROS-mediated apoptosis and cell cycle arrest and inhibits EMT in human cervical carcinoma cells. RSC Adv 8(56):32022–32037

    CAS  Google Scholar 

Download references


The authors are very thankful to AIRF, JNU, and New Delhi for helping in characterization studies.


This study is supported by the Indian Council of Medical Research to Surya Pratap Singh in the form of fellowship (No.45/18/2018/BMS/TRM), the UGC-RNW, LRE, DST-PURSE, UPE-II, and JNU.

Author information



Corresponding author

Correspondence to Arbind Acharya.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, S.P., Mishra, A., Shyanti, R.K. et al. Silver Nanoparticles Synthesized Using Carica papaya Leaf Extract (AgNPs-PLE) Causes Cell Cycle Arrest and Apoptosis in Human Prostate (DU145) Cancer Cells. Biol Trace Elem Res (2020).

Download citation


  • Carica papaya leaf extracts
  • Silver nanoparticles
  • Anticancer
  • Prostate cancer
  • Apoptosis