Oxidative Stress and Trace Elements in Pulmonary Tuberculosis Patients During 6 Months Anti-tuberculosis Treatment


Pulmonary tuberculosis (TB) is a well-known cause of imbalance in oxidative stress (OS) status and trace element levels. However, little information is available for targeting the correlation between OS and trace elements in pulmonary TB patients. The aim of our study was to analyze the OS status and its correlation with trace elements in patients initially and during 6 months anti-TB treatment. Eighty-six newly diagnosed pulmonary TB patients were consecutively recruited, and 112 age- and sex-matched healthy controls participated in the study. Serum markers of OS and trace elements levels were tested and analyzed in all subjects during 6 months anti-TB treatment. Compared with healthy controls, significantly increased level of malondialdehyde (MDA), decreased glutathione (GSH) level, superoxide dismutase (SOD), and catalase (CAT) activities were found in TB patients. The activities of SOD and CAT and GSH level recovered till normal range at treatment final. Zinc (Zn), selenium (Se), and copper (Cu) concentrations were significantly lower in TB patients in comparison with healthy controls, whereas Zn, Cu, and Se concentrations rise during 6 months anti-TB treatment. Zn was positively correlated with Cu, Se, and GSH, while MDA was negatively correlated with Zn, Se, SOD, and CAT, and SOD was positively correlated with Cu, Zn, and CAT. Our findings indicate that anti-TB treatment could reduce the status of OS and increase the levels of trace elements. The routine assessment of OS markers and element traces may guarantee improved monitoring the anti-TB treatment.

This is a preview of subscription content, log in to check access.


  1. 1.

    Yang M, Pan H, Lu L, He X, Chen H, Tao B, Liu W, Yi H, Tang S (2019) Home-based Anti-Tuberculosis Treatment Adverse Reactions (HATTAR) study: a protocol for a prospective observational study. BMJ Open 9(3):e027321. https://doi.org/10.1136/bmjopen-2018-027321

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Mhalu G, Weiss MG, Hella J, Mhimbira F, Mahongo E, Schindler C, Reither K, Fenner L, Zemp E, Merten S (2019) Explaining patient delay in healthcare seeking and loss to diagnostic follow-up among patients with presumptive tuberculosis in Tanzania: a mixed-methods study. BMC Health Serv Res 19(1):217. https://doi.org/10.1186/s12913-019-4030-4

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Castro AT, Mendes M, Freitas S, Roxo PC (2015) Incidence and risk factors of major toxicity associated to first-line antituberculosis drugs for latent and active tuberculosis during a period of 10 years. Rev Port Pneumol 21(3):144–150. https://doi.org/10.1016/j.rppnen.2014.08.004

    Article  PubMed  Google Scholar 

  4. 4.

    Sweetland AC, Kritski A, Oquendo MA, Sublette ME, Norcini Pala A, Silva LRB, Karpati A, Silva EC, Moraes MO, Silva JRLE, Wainberg ML (2017) Addressing the tuberculosis-depression syndemic to end the tuberculosis epidemic. Int J Tuberc Lung Dis 21(8):852–861. https://doi.org/10.5588/ijtld.16.0584

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    van der Vliet A, Janssen-Heininger YMW, Anathy V (2018) Oxidative stress in chronic lung disease: from mitochondrial dysfunction to dysregulated redox signaling. Mol Asp Med 63:59–69. https://doi.org/10.1016/j.mam.2018.08.001

    CAS  Article  Google Scholar 

  6. 6.

    Musisi E, Matovu DK, Bukenya A, Kaswabuli S, Zawedde J, Andama A, Byanyima P, Sanyu I, Sessolo A, Seremba E, Davis JL, Worodria W, Huang L, Walter ND, Mayanja-Kizza H (2018) Effect of anti-retroviral therapy on oxidative stress in hospitalized HIV-infected adults with and without TB. Afr Health Sci 18(3):512–522. https://doi.org/10.4314/ahs.v18i3.7

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Yew WW, Chan DP, Chang KC, Zhang Y (2019) Does oxidative stress contribute to antituberculosis drug resistance? J Thorac Dis 11(7):E100–E102. https://doi.org/10.21037/jtd.2019.06.36

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Shastri MD, Shukla SD, Chong WC, Dua K, Peterson GM, Patel RP, Hansbro PM, Eri R, O’Toole RF (2018) Role of oxidative stress in the pathology and management of human tuberculosis. Oxidative Med Cell Longev 2018:7695364–7695310. https://doi.org/10.1155/2018/7695364

    CAS  Article  Google Scholar 

  9. 9.

    Yew WW, Yoshiyama T, Leung CC, Chan DP (2018) Epidemiological, clinical and mechanistic perspectives of tuberculosis in older people. Respirology 23(6):567–575. https://doi.org/10.1111/resp.13303

    Article  PubMed  Google Scholar 

  10. 10.

    Quaye O, Kuleape JA, Bonney EY, Puplampu P, Tagoe EA (2019) Imbalance of antioxidant enzymes activities and trace elements levels in Ghanaian HIV-infected patients. PLoS One 14(7):e0220181. https://doi.org/10.1371/journal.pone.0220181

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Goff JP (2018) Invited review: mineral absorption mechanisms, mineral interactions that affect acid-base and antioxidant status, and diet considerations to improve mineral status. J Dairy Sci 101(4):2763–2813. https://doi.org/10.3168/jds.2017-13112

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Zahran AM, Elsayh KI, El-Deek SE, El-Baz MA (2015) Oxidative stress, trace elements, and circulating microparticles in patients with Gaucher disease before and after enzyme replacement therapy. Clin Appl Thromb Hemost 21:58–65. https://doi.org/10.1177/1076029613489595

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Manafikhi H, Drummen G, Palmery M, Peluso I (2017) Total antioxidant capacity in beta-thalassemia: a systematic review and meta-analysis of case-control studies. Crit Rev Oncol Hematol 110:35–42. https://doi.org/10.1016/j.critrevonc.2016.12.007

    Article  PubMed  Google Scholar 

  14. 14.

    Oh J, Shin SH, Choi R, Kim S, Park HD, Kim SY, Han SA, Koh WJ, Lee SY (2019) Assessment of 7 trace elements in serum of patients with nontuberculous mycobacterial lung disease. J Trace Elem Med Biol 53:84–90. https://doi.org/10.1016/j.jtemb.2019.02.004

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Sepehri Z, Mirzaei N, Sargazi A, Sargazi A, Mishkar AP, Kiani Z, Oskoee HO, Arefi D, Ghavami S (2017) Essential and toxic metals in serum of individuals with active pulmonary tuberculosis in an endemic region. J Clin Tuberc Other Mycobact Dis 6:8–13. https://doi.org/10.1016/j.jctube.2017.01.001

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Choi R, Kim HT, LimY KMJ, Kwon OJ, Jeon K, Park HY, Jeong BH, Koh WJ, Lee SY (2015) Serum concentrations of trace elements in patients with tuberculosis and its association with treatment outcome. Nutrients 7(7):5969–5981. https://doi.org/10.3390/nu7075263

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Seyedrezazadeh E, Ostadrahimi A, Mahboob S, Assadi Y, Ghaemmagami J, Pourmogaddam M (2008) Effect of vitamin E and selenium supplementation on oxidative stress status in pulmonary tuberculosis patients. Respirology 13(2):294–298. https://doi.org/10.1111/j.1440-1843.2007.01200.x

    Article  PubMed  Google Scholar 

  18. 18.

    Khameneh B, Iranshahy M, Vahdati-Mashhadian N, Sahebkar A, Fazly Bazzaz BS (2019) Non-antibiotic adjunctive therapy: a promising approach to fight tuberculosis. Pharmacol Res 146:104289. https://doi.org/10.1016/j.phrs.2019.104289

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Ministry of Health of the People’s Republic of China (2018) Diagnosis standard of pulmonary tuberculosis WS 288–2017. Beijing

  20. 20.

    Wu S, Wang H, Li B (2018) Tuberculosis controlling, from China’s perspective. J Infect Public Health 11(2):300. https://doi.org/10.1016/j.jiph.2017.07.014

    Article  PubMed  Google Scholar 

  21. 21.

    Yang HB, Wang JF, Yang XX, Wu F, Qi Z, Xu B, Liu W, Deng Y (2019) Occupational manganese exposure, reproductive hormones, and semen quality in male workers: a cross-sectional study. Toxicol Ind Health 35(1):53–62. https://doi.org/10.1177/0748233718810109

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Dua K, Rapalli VK, Shukla SD, Singhvi G, Shastri MD, Chellappan DK, Satija S, Mehta M, Gulati M, Pinto TJA, Gupta G, Hansbro PM (2018) Multi-drug resistant mycobacterium tuberculosis & oxidative stress complexity: emerging need for novel drug delivery approaches. Biomed Pharmacother 107:1218–1229. https://doi.org/10.1016/j.biopha.2018.08.101

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Ighodaro OM, Akinloye OA (2018) First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alex J Med 54(4):287–293. https://doi.org/10.1016/j.ajme.2017.09.001

    Article  Google Scholar 

  24. 24.

    Kulkarni R, Deshpande A, Saxena R, Saxena K (2013) A study of serum malondialdehyde and cytokine in tuberculosis patients. J Clin Diagn Res 7(10):2140–2142. https://doi.org/10.7860/JCDR/2013/5736.3452

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Srinivasan S, Pragasam V, Jenita X, Kalaiselvi P, Muthu V, Varalakshmi P (2004) Oxidative stress in urogenital tuberculosis patients: a predisposing factor for renal stone formation--amelioration by vitamin E supplementation. Clin Chim Acta 350(1–2):57–63. https://doi.org/10.1016/j.cccn.2004.07.001

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Golubović S, Stanković I, Ristić L, Cosić V, Dordević I, Radović M (2010) Antioxidant enzymes and lipid peroxidation products in patients with pulmonary tuberculosis. Med Pregl 63(7–8):450–453. https://doi.org/10.2298/mpns1008450g

    Article  PubMed  Google Scholar 

  27. 27.

    Chaturvedi R, Bansal K, Narayana Y, Kapoor N, Sukumar N, Togarsimalemath SK, Chandra N, Mishra S, Ajitkumar P, Joshi B, Kotach VM, Patil SA, Balaji KN (2019) Correction: the multifunctional PE_PGRS11 protein from Mycobacterium tuberculosis plays a role in regulating resistance to oxidative stress. J Biol Chem 294(50):19445. https://doi.org/10.1074/jbc.AAC119.011906

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    He L, Zhang G, Wei M, Zhao Y, Chen W, Peng Q, Meng G (2019) Effect of individualized dietary intervention on oxidative stress in patients with type 2 diabetes complicated by tuberculosis in Xinjiang, China. Diabetes Ther 10(6):2095–2105. https://doi.org/10.1007/s13300-019-00691-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Ali W, Ahmad I, Srivastava VK, Prasad R, Kushwaha RA, Saleem M (2014) Serum zinc levels and its association with vitamin A levels among tuberculosis patients. J Nat Sci Biol Med 5(1):130–134. https://doi.org/10.4103/0976-9668.127310

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Sargazi A, Gharebagh RA, Sargazi A, Aali H, Oskoee HO, Sepehri Z (2017) Role of essential trace elements in tuberculosis infection: a review article. Indian J Tuberc 64(4):246–251. https://doi.org/10.1016/j.ijtb.2017.03.003

    Article  PubMed  Google Scholar 

  31. 31.

    Edem VF, Ige O, Arinola OG (2015) Plasma vitamins and essential trace elements in newly diagnosed pulmonary tuberculosis patients and at different durations of anti-tuberculosis chemotherapy. Egypt J Chest Dis Tuberc 64(3):675–679. https://doi.org/10.1016/j.ejcdt.2015.03.031

    Article  Google Scholar 

  32. 32.

    Moraes ML, Ramalho DM, Delogo KN, Miranda PF, Mesquita ED, de Melo Guedes de Oliveira HM, Netto AR, Dos Anjos MJ, Kritski AL, de Oliveira MM (2014) Association of serum levels of iron, copper, and zinc, and inflammatory markers with bacteriological sputum conversion during tuberculosis treatment. Biol Trace Elem Res 160(2):176–184. https://doi.org/10.1007/s12011-014-0046-0

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Weiss G, Carver PL (2018) Role of divalent metals in infectious disease susceptibility and outcome. Clin Microbiol Infect 24(1):16–23. https://doi.org/10.1016/j.cmi.2017.01.018

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Sepehri Z, Arefi D, Mirzaei N, Afshari A, Kiani Z, Sargazi A, Mishkar AP, Oskoee HO, Masjedi M, Sargazi A, Ghavami S (2018) Changes in serum level of trace elements in pulmonary tuberculosis patients during anti-tuberculosis treatment. J Trace Elem Med Biol 50:161–166. https://doi.org/10.1016/j.jtemb.2018.06.024

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Cabrera Andrade BK, Garcia-Perdomo HA (2020) Effectiveness of micronutrients supplement in patients with active tuberculosis on treatment: systematic review/meta-analysis. Complement Ther Med 48:102268. https://doi.org/10.1016/j.ctim.2019.102268

    Article  PubMed  Google Scholar 

  36. 36.

    Choi R, Jeong BH, Koh WJ, Lee SY (2017) Recommendations for optimizing tuberculosis treatment: therapeutic drug monitoring, pharmacogenetics, and nutritional status considerations. Ann Lab Med 37(2):97–107. https://doi.org/10.3343/alm.2017.37.2.97

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Bahi GA, Boyvin L, Méité S, M’Boh GM, Yeo K, N’Guessan KR, Bidié AD, Djaman AJ (2017) Assessments of serum copper and zinc concentration, and the Cu/Zn ratio determination in patients with multidrug resistant pulmonary tuberculosis (MDR-TB) in Côte d’Ivoire. BMC Infect Dis 17(1):257. https://doi.org/10.1186/s12879-017-2343-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Deveci F, Ilhan N (2003) Plasma malondialdehyde and serum trace element concentrations in patients with active pulmonary tuberculosis. Biol Trace Elem Res 95(1):29–38. https://doi.org/10.1385/BTER:95:1:29

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Verma PK, Sharma A, Shankar H, Sharma A, Rao DN (2018) Role of trace elements, oxidative stress and immune system: a triad in premature ovarian failure. Biol Trace Elem Res 184(2):325–333. https://doi.org/10.1007/s12011-017-1197-6

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Ciftci TU, Ciftci B, Yis O, Guney Y, Bilgihan A, Ogretensoy M (2003) Changes in serum selenium, copper, zinc levels and Cu/Zn ratio in patients with pulmonary tuberculosis during therapy. Biol Trace Elem Res 95(1):65–71. https://doi.org/10.1385/BTER:95:1:65

    CAS  Article  PubMed  Google Scholar 

Download references


We express our gratitude to the local health care workers in Linyi People’s Hospital of Shandong, China, for their help with data and blood sample collection during the course of the study. We also thank all the participants who were involved in the collection of samples.

Author information




Methodology: Chaoqun Qi and Haibo Yang. Formal analysis and investigations, writing, and original draft preparation: Chaoqun Qi, Hongjun Wang, Zhaoying Liu, and Haibo Yang. Conceptualization, writing, and review and editing: Haibo Yang.

Corresponding author

Correspondence to Haibo Yang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Statement

This research was approved by the Medical Ethics Committee of Linyi People’s Hospital and followed the Declaration of Helsinki. Written informed consent will be signed by every participant before data collection. All data in this study will be kept anonymous and managed with confidentially.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qi, C., Wang, H., Liu, Z. et al. Oxidative Stress and Trace Elements in Pulmonary Tuberculosis Patients During 6 Months Anti-tuberculosis Treatment. Biol Trace Elem Res (2020). https://doi.org/10.1007/s12011-020-02254-0

Download citation


  • Pulmonary tuberculosis
  • Oxidative stress
  • Trace elements
  • Correlation