Sodium, Magnesium, Calcium, Manganese, Iron, Copper, and Zinc in Serums of Beta Thalassemia Major Patients

Abstract

Thalassemia major is the most severe form of thalassemia and occurs with the impaired synthesis of β-globin which causes the accumulation of unpaired alpha globin chain. Patients with beta thalassemia major can only survive with periodically safe blood transfusions leading to the accumulation of iron in the bloods of patients, and this causes several endocrinopathies. Although iron overload in thalassemic patients has been extensively studied, there is little information about the levels of other trace elements. The aim of this study was to investigate the differences of serum concentrations of sodium, magnesium, calcium, manganese, iron, copper, and zinc for patients with major β-thalassemia. Concentration of elements was determined by inductively coupled plasma-mass spectrometry system. The statistical difference between the elemental concentrations of the patient and control groups was found by the Mann-Whitney U test. In addition, the relationship between concentrations of the measured elements for each group was determined by the Spearman correlation test. The results revealed that iron, zinc, magnesium, and manganese serum levels of thalassemic patients were significantly higher than the control group while calcium concentration was statistically lower than the control group. There was no significant difference observed for copper and sodium levels of patients when compared to the healthy control group.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Galanello R, Origa R (2010) Beta-thalassemia. Orphanet J Rare Dis 5(1):11

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Cao A, Galanello R (2010) Beta-thalassemia. Genet Med 12(2):61–76

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Muncie HL Jr, Campbell JS (2009) Alpha and beta thalassemia. Am Fam Physician 80(4):339–344

    PubMed  Google Scholar 

  4. 4.

    Bannerman RM, Keusch G, Kreimer-Birnbaum M, Vance VK, Vaughan S (1967) Thalassemia intermedia, with iron overload, cardiac failure, diabetes mellitus, hypopituitarism and porphyrinuria. Am J Med 42(3):476–486

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Zuppinger K, Molinari B, Hirt A, Imbach P, Gugler E, Tönz O, Zurbrügg R (1979) Increased risk of diabetes mellitus in beta-thalassemia major due to iron overload. Helv Paediatr Acta 34(3):197–207

    CAS  PubMed  Google Scholar 

  6. 6.

    Shazia Q, Mohammad Z, Rahman T, Shekhar HU (2012) Correlation of oxidative stress with serum trace element levels and antioxidant enzyme status in beta thalassemia major patients: a review of the literature. Anemia 2012:1–7

    Article  CAS  Google Scholar 

  7. 7.

    Malakar R, Kour M, Ahmed A, Malviya S, Dangi C (2014) Trace elements ratio in patients of haemoglobinopathie. Int J Curr Microbiol App Sci 3(6):81–92

    CAS  Google Scholar 

  8. 8.

    Shuler TR, Pootrakul P, Yarnsukon P, Nielsen FH (1990) Effect of thalassemia/hemoglobin E disease on macro, trace, and ultratrace element concentrations in human tissue

  9. 9.

    Khan M, Kazi TG, Afridi HI, Bilal M, Akhtar A, Khan S, Kadar S (2017) Variation of calcium, copper and iron levels in serum, bile and stone samples of patients having different types of gallstone: a comparative study. Clin Chim Acta 471:254–262

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Arain MS, Kazi TG, Afridi HI, Bilal M, Ali J, Haseeb A (2018) Application of dual cloud point extraction for the enrichment of zinc in serum samples of psychiatric patients prior to analysis by FAAS. J Ind Eng Chem 62:58–63

    CAS  Article  Google Scholar 

  11. 11.

    McDonald C, Colebourne K, Faddy HM, Flower R, Fraser JF (2013) Plasma selenium status in a group of Australian blood donors and fresh blood components. J Trace Elem Med Biol 27(4):352–354

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Harrington JM, Young DJ, Essader AS, Sumner SJ, Levine KE (2014) Analysis of human serum and whole blood for mineral content by ICP-MS and ICP-OES: development of a mineralomics method. Biol Trace Elem Res 160(1):132–142

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Forrer R, Gautschi K, Lutz H (2001) Simultaneous measurement of the trace elements Al, As, B, Be, Cd, Co, Cu, Fe, Li, Mn, Mo, Ni, Rb, Se, Sr, and Zn in human serum and their reference ranges by ICP-MS. Biol Trace Elem Res 80(1):77–93

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Pröfrock D, Prange A (2012) Inductively coupled plasma-mass spectrometry (ICP-MS) for quantitative analysis in environmental and life sciences: a review of challenges, solutions, and trends. Appl Spectrosc 66(8):843–868

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Prashanth L, Kattapagari KK, Chitturi RT, Baddam VRR, Prasad LK (2015) A review on role of essential trace elements in health and disease. J Dr Ntr Univ Health Sci 4(2):75

    Article  Google Scholar 

  16. 16.

    Hambidge M (2003) Biomarkers of trace mineral intake and status. J Nutr 133(3):948S–955S

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Lieu PT, Heiskala M, Peterson PA, Yang Y (2001) The roles of iron in health and disease. Mol Asp Med 22(1):1–87. https://doi.org/10.1016/S0098-2997(00)00006-6

    CAS  Article  Google Scholar 

  18. 18.

    Kohgo Y, Ikuta K, Ohtake T, Torimoto Y, Kato J (2008) Body iron metabolism and pathophysiology of iron overload. Int J Hematol 88(1):7–15

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Piga A, Longo F, Duca L, Roggero S, Vinciguerra T, Calabrese R, Hershko C, Cappellini MD (2009) High nontransferrin bound iron levels and heart disease in thalassemia major. Am J Hematol 84(1):29–33

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Walker EM, Walker SM (2000) Effects of iron overload on the immune system. Ann Clin Lab Sci 30(4):354–365

    CAS  PubMed  Google Scholar 

  21. 21.

    Prabhu R, Prabhu V, Prabhu R (2009) Iron overload in beta thalassemia: a review. J Biosci Tech 1(1):20–31

    Google Scholar 

  22. 22.

    Wood JC, Enriquez C, Ghugre N, Otto-Duessel M, Aguilar M, Nelson MD, Moats R, Coates TD (2005) Physiology and pathophysiology of iron cardiomyopathy in thalassemia. Ann N Y Acad Sci 1054:386–395

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Kremastinos DT, Farmakis D, Aessopos A, Hahalis G, Hamodraka E, Tsiapras D, Keren A (2010) β-thalassemia cardiomyopathy: history, present considerations, and future perspectives. Circ Heart Fail 3(3):451–458

    PubMed  Article  Google Scholar 

  24. 24.

    Rink L (2000) Zinc and the immune system. Proc Nutr Soc 59(4):541–552

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    King JC, Shames DM, Woodhouse LR (2000) Zinc homeostasis in humans. J Nutr 130(5):1360S–1366S

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Prasad AS, Bao B, Beck FW, Kucuk O, Sarkar FH (2004) Antioxidant effect of zinc in humans. Free Radic Biol Med 37(8):1182–1190

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Ho E (2004) Zinc deficiency, DNA damage and cancer risk. J Nutr Biochem 15(10):572–578

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Faranoush M, RAHIMINEZHAD M, Karamizadeh Z, Ghorbani R, OUJI S (2008) Zinc supplementation effect on linear growth in transfusion dependent β thalassemia

  29. 29.

    Mahyar A, Ayazi P, Pahlevan A-A, Mojabi H, Sehhat M-R, Javadi A (2010) Zinc and copper status in children with beta-thalassemia major. Iran J Pediatr 20(3):297–302

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    KWAN EYW, LEE ACW, Li AMC, Tam SCF, Chan CF, Lau YL, Low LCK (1995) A cross-sectional study of growth, puberty and endocrine function in patients with thalassaemia major in Hong Kong. J Paediatr Child Health 31(2):83–87. https://doi.org/10.1111/j.1440-1754.1995.tb00752.x

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Rea F, Perrone L, Mastrobuono A, Toscano G, D’Amico M (1984) Zinc levels of serum, hair and urine in homozygous beta-thalassemic subjects under hypertransfusional treatment. Acta Haematol 71(2):139–142. https://doi.org/10.1159/000206574

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Mehdizadeh M, Zamani G, Tabatabaee S (2008) Zinc status in patients with major β-thalassemia. Pediatr Hematol Oncol 25(1):49–54. https://doi.org/10.1080/08880010701773738

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Martinez-Finley EJ, Gavin CE, Aschner M, Gunter TE (2013) Manganese neurotoxicity and the role of reactive oxygen species. Free Radic Biol Med 62:65–75

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Vayenas DV, Repanti M, Vassilopoulos A, Papanastasiou DA (1998) Influence of iron overload on manganese, zinc, and copper concentration in rat tissues in vivo: study of liver, spleen, and brain. Int J Clin Lab Res 28(3):183–186. https://doi.org/10.1007/s005990050041

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Gaetke LM, Chow CK (2003) Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189(1–2):147–163

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Angelova M, Asenova S, Nedkova V, Koleva-Kolarova R (2011) Copper in the human organism. Trakia J Sci 9(1):88–98

    Google Scholar 

  37. 37.

    Tapiero H, Townsend D, Tew K (2003) Trace elements in human physiology and pathology. Copper Biomed Pharmacother 57(9):386–398

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Fung EB (2010) Nutritional deficiencies in patients with thalassemia. Ann N Y Acad Sci 1202(1):188–196

    PubMed  Article  Google Scholar 

  39. 39.

    Mashhadi MA (2013) Copper status in patients with thalassemia major in Zahedan, Iran. Int J Hematol-Oncol Stem Cell Res 7(3):21–24

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Al-Samarrai AH, Adaay MH, Al-Tikriti KA, Al-Anzy MM (2008) Evaluation of some essential element levels in thalassemia major patients in Mosul district, Iraq. Saudi Med J 29(1):94–97

    PubMed  Google Scholar 

  41. 41.

    Peacock M (2010) Calcium metabolism in health and disease. Clin J Am Soc Nephrol 5(Supplement 1):S23–S30

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Theobald HE (2005) Dietary calcium and health. Nutr Bull 30(3):237–277

    Article  Google Scholar 

  43. 43.

    Hamidieh AA, Moradbeag B, Pasha F, Jalili M, Hadjibabaie M, Keshavarznia M (2009) High prevalence of hypoparathyroidism in patients with beta-thalassemia major. Int J Hematol-Oncol Stem Cell Res 17–20

  44. 44.

    Aleem A, Al-Momen A-K, Al-Harakati MS, Hassan A, Al-Fawaz I (2000) Hypocalcemia due to hypoparathyroidism in β-thalassemia major patients. Ann Saudi Med 20(5–6):364–366

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Musso CG (2009) Magnesium metabolism in health and disease. Int Urol Nephrol 41(2):357–362

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Swaminathan R (2003) Magnesium metabolism and its disorders. Clin Biochem Rev 24(2):47–66

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Rayssiguier Y, Libako P, Nowacki W, Rock E (2010) Magnesium deficiency and metabolic syndrome: stress and inflammation may reflect calcium activation. Magnes Res 23(2):73–80

    CAS  PubMed  Google Scholar 

  48. 48.

    Hans CP, Sialy R, Bansal DD (2002) Magnesium deficiency and diabetes mellitus. Curr Sci 1456–1463

  49. 49.

    Gums JG (2004) Magnesium in cardiovascular and other disorders. Am J Health Syst Pharm 61(15):1569–1576

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Reynolds RM, Padfield PL, Seckl JR (2006) Disorders of sodium balance. BMJ 332(7543):702–705

    PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Mastoi GM, Palh ZA, Lashari KH, Naz A (2014) To study the effect of iron load on plasma minerals and hematological parameters in thalassemia patients. J Appl Sci Res 2(5):26–33

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sezgin Bakırdere.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Şahin, A., Er, E.Ö., Öz, E. et al. Sodium, Magnesium, Calcium, Manganese, Iron, Copper, and Zinc in Serums of Beta Thalassemia Major Patients. Biol Trace Elem Res (2020). https://doi.org/10.1007/s12011-020-02217-5

Download citation

Keywords

  • Beta thalassemia major
  • Trace elements
  • Serum samples
  • Statistical test