Rapid and Low Cost Determination of Total Mercury in Cat Foods by Photochemical Vapor Generation Coupled to Atomic Absorption Spectrometry

Abstract

A rapid and low-cost method for determination of total mercury (THg) in cat food was developed based on photochemical vapor generation (PVG) coupled to cold vapor atomic absorption spectrometry (CVAAS). Cat food samples with ingredients based on tuna fish and other seafood were investigated. Organic acid precursor and concentration for radical generation and Hg photoreduction, sample UV irradiation time, and carrier gas flow were optimized. Highest PVG efficiency was achieved using 10% v v−1 formic acid, 4-s UV irradiation time, and a carrier gas flow of 50 mL min−1. The calibration function presented a correlation coefficient of 0.99. Accuracy was confirmed by analysis of Certified Reference Materials with recoveries of 93–110% and relative standard deviation lower than 6%. Under optimized conditions, a procedural detection limit of 0.28 μg kg−1 was obtained. Determination of THg in 10 samples of cat food purchased in local markets revealed a concentration range of 0.035–0.388 mg kg−1. Highest concentrations were found in cat foods. Only one sample presented a concentration close to the regulatory limit of the European Commission Directive. Assuming the estimated daily food intake (EDI) calculated in a range of 0.0021 to 0.023 mg of THg per day per kg body weight, it is concluded that it remains below that considered lethal for cats. The methodology is efficient, simple, low cost, and fit for purpose.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Zicker SC (2008) Evaluating pet foods: how confident are you when you recommend a commercial pet food? Top Companion Anim Med 35:6–10. https://doi.org/10.1053/j.tcam.2008.04.003

    Article  Google Scholar 

  2. 2.

    Costa SSL, Pereira ACL, Passos EA, Alves JPH, Garcia CAB, Araujo RGO (2013) Multivariate optimization of an analytical method for the analysis of dog and cat foods by ICP OES. Talanta 108:157–164. https://doi.org/10.1016/j.talanta.2013.03.002

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Luippold A, Gustin MS (2016) Mercury concentrations in wet and dry cat and dog food. Anim Feed Sci Technol 222:190–193. https://doi.org/10.1016/j.anifeedsci.2016.10.021

    CAS  Article  Google Scholar 

  4. 4.

    Bischoff K, Rumbeiha WK (2018) Pet food recalls and pet food contaminants in small animals: an update. Vet Clin N Am Small Anim Pract 48:917–931. https://doi.org/10.1016/j.cvsm.2018.07.005

    Article  Google Scholar 

  5. 5.

    Ganther HE, Sunde ML (2007) Factors in fish modifying methylmercury toxicity and metabolism. Biol Trace Elem Res 119:221–233. https://doi.org/10.1007/s12011-007-8006-6

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Schmidt L, Bizzi CA, Duarte FA, Muller EI, Krupp E, Feldmann J, Flores EMM (2015) Evaluation of Hg species after culinary treatments of fish. Food Control 47:413–419. https://doi.org/10.1016/j.foodcont.2014.07.040

    CAS  Article  Google Scholar 

  7. 7.

    Li P, Feng X, Qiu G, Li Z, Fu X, Sakamoto M, Liu X, Wang D (2008) Mercury exposures and symptoms in smelting workers of artisanal mercury mines in Wuchuan, Guizhou, China. Environ Res 107:108–114. https://doi.org/10.1016/j.envres.2007.08.003

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Pereira L, Maranhao TA, Frescura VLA, Borges DLG (2019) Multivariate assessment of extraction conditions for the fractionation analysis of mercury in oily sludge samples using cold vapor atomic fluorescence spectrometry. J Anal At Spectrom 34:1932–1941. https://doi.org/10.1039/c9ja00179d

    CAS  Article  Google Scholar 

  9. 9.

    Moraes PM, Santos FA, Cavecci B, Padilha CCF, Vieira JCS, Roldan PS, Padilha PDM (2013) GFAAS determination of mercury in muscle samples of fish from Amazon, Brazil. Food Chem 141:2614–2617. https://doi.org/10.1016/j.foodchem.2013.05.008

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Counter SA, Buchanan LH (2004) Mercury exposure in children: a review. Toxicol Appl Pharmacol 198:209–230. https://doi.org/10.1016/j.taap.2003.11.032

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Gao Y, Yang W, Zheng C, Hou X, Wu L (2011) On-line preconcentration and in situ photochemical vapor generation in coiled reactor for speciation analysis of mercury and methylmercury by atomic fluorescence spectrometry. J Anal At Spectrom 26:126–132. https://doi.org/10.1039/c0ja00137f

    CAS  Article  Google Scholar 

  12. 12.

    Li M, Deng Y, Jiang X, Hou X (2018) UV photochemical vapor generation-nitrogen microwave induced plasma optical emission spectrometric determination of nickel. J Anal At Spectrom 33:1086–1091. https://doi.org/10.1039/c8ja00100f

    CAS  Article  Google Scholar 

  13. 13.

    Nóbrega JA, Sturgeon RE, Grinberg P, Gardner GJ, Brophy CS, Garcia EE (2011) UV photochemical generation of volatile cadmium species. J Anal At Spectrom 26:2519–2523. https://doi.org/10.1039/c1ja10252d

    CAS  Article  Google Scholar 

  14. 14.

    Sturgeon RE (2017) Photochemical vapor generation: a radical approach to analyte introduction for atomic spectrometry. J Anal At Spectrom 32:2319–2340. https://doi.org/10.1039/c7ja00285h

    CAS  Article  Google Scholar 

  15. 15.

    Lopes GS, Sturgeon RE, Grinberg P, Pagliano E (2017) Evaluation of approaches to the abatement of nitrate interference with photochemical vapor generation. J Anal At Spectrom 32:2378–2390. https://doi.org/10.1039/c7ja00311k

    CAS  Article  Google Scholar 

  16. 16.

    Romanovskiy KA, Bolshov MA, Münz AV, Temerdashev ZA, Burylin MY, Sirota KA (2018) A novel photochemical vapor generator for ICP-MS determination of As, Bi, Hg, Sb, Se and Te. Talanta 187:370–378. https://doi.org/10.1016/j.talanta.2018.05.052

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Zhang S, Luo H, Peng M, Tian Y, Hou X, Jiang X, Zheng C (2015) Determination of Hg, Fe, Ni, and Co by miniaturized optical emission spectrometry integrated with flow injection photochemical vapor generation and point discharge. Anal Chem 87:10712–10718. https://doi.org/10.1021/acs.analchem.5b02820

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Hu J, Sturgeon RE, Nadeau K, Hou X, Zheng C, Yang L (2018) Copper ion assisted photochemical vapor generation of chlorine for its sensitive determination by sector field inductively coupled plasma mass spectrometry. Anal Chem 90:4112–4118. https://doi.org/10.1021/acs.analchem.8b00035

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Macedo de Oliveira R, Borges DLG (2018) UV photochemical vapor generation of noble metals (Au, Ir, Pd, Pt and Rh): a feasibility study using inductively coupled plasma mass spectrometry and seawater as a test matrix. J Anal At Spectrom 33:1700–1706. https://doi.org/10.1039/c8ja00179k

    CAS  Article  Google Scholar 

  20. 20.

    Nováková E, Rybínová M, Hraníček J, Rychlovský P, Červený V (2018) Comparison of interference in chemical, electrochemical and UV-photochemical generation methods of volatile Se species. J Anal At Spectrom 33:118–126. https://doi.org/10.1039/c7ja00208d

    CAS  Article  Google Scholar 

  21. 21.

    De Jesus HC, Grinberg P, Sturgeon RE (2016) System optimization for determination of cobalt in biological samples by ICP-OES using photochemical vapor generation. J Anal At Spectrom 31:1590–1604. https://doi.org/10.1039/c6ja00069j

    Article  Google Scholar 

  22. 22.

    Zhou J, Deng D, Su Y, Lv Y (2019) Determination of total inorganic arsenic in water samples by cadmium ion assisted photochemical vapor generation-atomic fluorescence spectrometry. Microchem J 146:359–365. https://doi.org/10.1016/j.microc.2019.01.022

    CAS  Article  Google Scholar 

  23. 23.

    Francisco BBA, Rocha AA, Grinberg P, Sturgeon RE, Cassella RJ (2016) Determination of inorganic mercury in petroleum production water by inductively coupled plasma optical emission spectrometry following photochemical vapor generation. J Anal At Spectrom 31:751–758. https://doi.org/10.1039/c5ja00444f

    CAS  Article  Google Scholar 

  24. 24.

    Dos Santos EJ, Herrmann AB, Dos Santos AB, Baika LM, Sato CS, Tormen L, Sturgeon RE, Curtius AJ (2010) Determination of thimerosal in human and veterinarian vaccines by photochemical vapor generation coupled to ICP OES. J Anal At Spectrom 25:1627–1632. https://doi.org/10.1039/c0ja00029a

    CAS  Article  Google Scholar 

  25. 25.

    Gao Y, Shi Z, Zong Q, Wu P, Su J, Liu R (2014) Direct determination of mercury in cosmetic samples by isotope dilution inductively coupled plasma mass spectrometry after dissolution with formic acid. Anal Chim Acta 812:6–11. https://doi.org/10.1016/j.aca.2014.01.002

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Oreste EQ, De Oliveira RM, Ribeiro AS, Mahmoud TS, Vieira MA (2017) Determination of Hg in biological samples and ethanol fuel by photochemical vapor generation after pre-concentration in a gold trap. J Braz Chem Soc 28:1779–1787. https://doi.org/10.21577/0103-5053.20170038

    CAS  Article  Google Scholar 

  27. 27.

    Vieira MA, Ribeiro AS, Curtius AJ, Sturgeon RE (2007) Determination of total mercury and methylmercury in biological samples by photochemical vapor generation. Anal Bional Chem 388:837–847. https://doi.org/10.1007/s00216-007-1194-2

    CAS  Article  Google Scholar 

  28. 28.

    Paulelli ACC, Jr Martins AC, Paula ES, Souza JMO, Carneiro MFH, Jr Barbosa F, Batista BL (2018) Risk assessment of 22 chemical elements in dry and canned pet foods. J Consum Prot Food S 13:359–365. https://doi.org/10.1007/s00003-018-1178-5

  29. 29.

    GBC, Government of British Columbia (1996) Animal weights and their food and water requirements. Resource document the environment and resource division ministry of environment, lands and parks. https://www2.gov.bc.ca/assets/gov/environment/air-land water/water/waterquality/water-quality-reference-documents/animal_weights_and_their_food_and_water_requirements.pdf. Accessed in December 2019

  30. 30.

    He C, Cheng G, Zheng C, Wu L, Lee Y (2015) Analytical methods photochemical vapor generation and in situ preconcentration for determination of mercury by graphite furnace atomic absorption spectrometry. Anal Methods 7:3015–3021. https://doi.org/10.1039/C5AY00095E

    CAS  Article  Google Scholar 

  31. 31.

    Quadros DPC, Borges DLG (2014) Direct analysis of alcoholic beverages for the determination of cobalt, nickel and tellurium by inductively coupled plasma mass spectrometry following photochemical vapor generation. Microchem J 116:244–248. https://doi.org/10.1016/j.microc.2014.04.015

    CAS  Article  Google Scholar 

  32. 32.

    Covaci E, Senila M, Ponta M, Darvasi E, Petreus D, Frentiu M, Frentiu T (2017) Methylmercury determination in seafood by photochemical vapor generation capacitively coupled plasma microtorch optical emission spectrometry. Talanta 170:464–472. https://doi.org/10.1016/j.talanta.2017.04.036

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Da Luz PM, Kolling L, De Jesus A, Dessuy MB, Vale MGR, Da Silva MM (2016) Determination of mercury in fish by photochemical vapor generation graphite furnace atomic absorption spectrometry. Anal Methods 8:8165–8172. https://doi.org/10.1039/c6ay02342h

    Article  Google Scholar 

  34. 34.

    De Jesus A, Sturgeon RE, Liu J, Silva MM (2014) Determination of mercury in gasoline by photochemical vapor generation coupled to graphite furnace atomic absorption spectrometry. Microchem J 117:100–105. https://doi.org/10.1016/j.microc.2014.06.001

    CAS  Article  Google Scholar 

  35. 35.

    López-Rouco A, Stanisz E, Matusiewicz H, Lavilla I, Bendicho C (2008) UV reduction with ultrasound-assisted gas-liquid separation for the determination of mercury in biotissues by atomic absorption spectrometry. J Anal At Spectrom 23:1026–1029. https://doi.org/10.1039/b802612b

    CAS  Article  Google Scholar 

  36. 36.

    Fernández ZH, Valcárcel Rojas LA, Álvarez AM, Estevez Álvarez JR, Araújo dos Santos J, González IP, Gonzáles MR, Macias NA, Sánchez DL, Torres DH (2015) Application of cold vapor-atomic absorption (CVAAS) spectrophotometry and inductively coupled plasma-atomic emission spectrometry methods for cadmium, mercury and lead analyses of fish samples. Validation of the method of CVAAS. Food Control 48:37–42. https://doi.org/10.1016/j.foodcont.2014.05.056

    CAS  Article  Google Scholar 

  37. 37.

    EU (2010) Eureopean Comission Directive 2010/6/EU of the European Parliament and of the Council of 9 February 2010. Off J Euro Union 2010(37):29–32

  38. 38.

    Sires RA, Fascetti AJ, Puschner B, Larsen JA (2019) Determination of total mercury and methylmercury concentrations in commercial canine diets. Top Companion Anim Med 35:6–10. https://doi.org/10.1053/j.tcam.2019.02.002

    Article  PubMed  Google Scholar 

  39. 39.

    Kim H, Loftus JP, Mann S, Wakshlag JJ (2018) Evaluation of arsenic, cadmium, lead and mercury contamination in over-the-counter available dry dog foods with different animal ingredients (red meat, poultry, and fish). Front Vet Sci 5:1–8. https://doi.org/10.3389/fvets.2018.00264

    Article  Google Scholar 

  40. 40.

    Charbonneau SM, Munro IC, Nera EA, Armstrong FAJ, Willes RF, Bryce F, Nelson RF (1976) Chronic toxicity of methyl mercury in the adult cat interin report. Toxicology 5:337–349. https://doi.org/10.1016/0300-483X(76)90052-4

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Mattsson JL, Miller E, Alligood JP, Koering JE, Levin SG (1981) Early effects of methylmercury on the visual evoked response of the dog. Neurotoxicology 2:499–514

    CAS  PubMed  Google Scholar 

  42. 42.

    Davies TS, Nielson SW, Jortner BS (1977) Pathology of chronic and subacute canine methylmercurialism. J Am Anim Hosp Assoc 13:369–381

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Laboratório de Análise de Traço (LAT, UFC) for the use of instrumentation and all facilities. The authors are also grateful to Y. Gao (Chengdu University, China) for the flow-through lamp and R. Sturgeon (NRC-Ottawa, Canada) for scientific discussion.

Funding

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Instituto Nacional de Ciências e Tecnologias Analíticas Avançadas (INCTAA). N. F. Nobre and N. A. Silva are grateful for the scholarship by Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (FUNCAP) and CNPq.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gisele S. Lopes.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Silva, N.A., Nobre, N.F. & Lopes, G.S. Rapid and Low Cost Determination of Total Mercury in Cat Foods by Photochemical Vapor Generation Coupled to Atomic Absorption Spectrometry. Biol Trace Elem Res 199, 1161–1169 (2021). https://doi.org/10.1007/s12011-020-02216-6

Download citation

Keywords

  • Mercury
  • Cat foods
  • Tuna fish
  • Dietary intake
  • Photochemical vapor generation