Environment-Based Impairment in Mineral Nutrient Status and Heavy Metal Contents of Commonly Consumed Leafy Vegetables Marketed in Kyrgyzstan: a Case Study for Health Risk Assessment

Abstract

Leafy vegetables are important components of the human diet for providing mineral nutrients. However, due to the tendency of metal accumulation, metal contents of leafy vegetables need not only to be determined but also estimated health risk for revealing possible health effects on humans. The aims of this study are (I) to examine comprehensive concentrations of trace/heavy metals along with some macroelements including Ca, Cd, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, and Zn in selected leafy vegetables from Kyrgyzstan; (II) to assess recommended dietary allowances (RDA); and (III) to evaluate hazard quotient (HQ) and carcinogenic risk estimation with associated vegetable consumption. For this purpose, B, Ca, Cd, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, and Zn elements were quantified, utilizing an ICP-OES instrument, in 18 samples belonging to 12 different groups of leafy vegetables including celery, Chinese parsley, dill, garden sorrel, lettuce, parsley, purple basil, spinach, and white-red-napa cabbage collected from different bazaars of Kyrgyzstan. Average elemental contents of the analyzed vegetables were determined (in mg kg−1) as follows: B (3.21–64.79), Ca (852.51–17,183.20), Cd (0.015–0.09), Cu (6.08–63.47), Fe (116.52–768.66), K (2347.04–17,305.42), Mg (136.34–1261.11), Na (54.75–526.42), Ni (0.09–1.3), Pb (1.91–9.54), and Zn (29.49–314.93). Estimated daily intake, recommended daily allowance, hazard quotients, and carcinogenic risk values of the vegetables were calculated with the help of these results. In considering HQ values, Chinese cabbage was determined to be safe for the consumption of both genders whereas parsley to be safe for only males. Based on the carcinogenic risk calculation, most of the vegetables examined in this study were categorized as moderately risky. It was inferred from the given results that airborne pollution has impaired/increased the mineral contents of vegetables for both genders. The findings obtained from this study were compared with international standards and will contribute to the data available on a global scale.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    International Food Policy Research I (2019) IMPACT projections of food production, consumption, and hunger to 2050, with and without climate change: extended country-level results for 2019 GFPR Annex Table 5 (trans: Cgiar Research Program on Policies I, Markets, Cgiar Research Program on Climate Change A, Food S, Bill, Melinda Gates F). V2, DEACCESSIONED VERSION edn. Harvard Dataverse. doi:https://doi.org/10.7910/DVN/BMPQGN

  2. 2.

    Hadayat N, De Oliveira LM, Da Silva E, Han L, Hussain M, Liu X, Ma LQ (2018) Assessment of trace metals in five most-consumed vegetables in the US: conventional vs. organic. Environ Pollut 243:292–300. https://doi.org/10.1016/j.envpol.2018.08.065

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Li L, Pegg RB, Eitenmiller RR, Chun J-Y, Kerrihard AL (2017) Selected nutrient analyses of fresh, fresh-stored, and frozen fruits and vegetables. J Food Compos Anal 59:8–17. https://doi.org/10.1016/j.jfca.2017.02.002

    CAS  Article  Google Scholar 

  4. 4.

    Amagloh FK, Atuna RA, McBride R, Carey EE, Christides T (2017) Nutrient and total polyphenol contents of dark green leafy vegetables, and estimation of their iron bioaccessibility using the in vitro digestion/Caco-2 cell model. Foods 6(7):54

    Article  Google Scholar 

  5. 5.

    Borah S, Baruah AM, Das AK, Borah J (2009) Determination of mineral content in commonly consumed leafy vegetables. Food Anal Methods 2(3):226–230. https://doi.org/10.1007/s12161-008-9062-z

    Article  Google Scholar 

  6. 6.

    Larsson SC, Virtamo J, Wolk A (2011) Potassium, calcium, and magnesium intakes and risk of stroke in women. Am J Epidemiol 174(1):35–43. https://doi.org/10.1093/aje/kwr051

    Article  PubMed  Google Scholar 

  7. 7.

    Tools N (2019) USDA national nutrient database for standard reference [electronic resource]

  8. 8.

    Yahia EM, García-Solís P, Celis MEM (2019) Chapter 2 - Contribution of fruits and vegetables to human nutrition and health. In: Yahia EM (ed) Postharvest physiology and biochemistry of fruits and vegetables. Woodhead publishing, pp 19-45. doi:https://doi.org/10.1016/B978-0-12-813278-4.00002-6

  9. 9.

    Manchali S, Chidambara Murthy KN, Patil BS (2012) Crucial facts about health benefits of popular cruciferous vegetables. J Funct Foods 4(1):94–106. https://doi.org/10.1016/j.jff.2011.08.004

    CAS  Article  Google Scholar 

  10. 10.

    Vatansever R, Ozyigit II, Filiz E (2017) Essential and beneficial trace elements in plants, and their transport in roots: a review. Appl Biochem Biotechnol 181(1):464–482. https://doi.org/10.1007/s12010-016-2224-3

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    FAO (2017) The future of food and agriculture – trends and challenges. Rome

  12. 12.

    Godfray HC, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327(5967):812–818. https://doi.org/10.1126/science.1185383

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Singh RB, Shastun S, Chibisov S, Itharat A, De Meester F, Wilson DW, Halabi G, Horiuchi R, Takahashi T (2016) Functional food security and the heart. J Cardiol Ther 3(6):599–607

    Google Scholar 

  14. 14.

    Gomiero T (2018) Food quality assessment in organic vs. conventional agricultural produce: findings and issues. Appl Soil Ecol 123:714–728. https://doi.org/10.1016/j.apsoil.2017.10.014

    Article  Google Scholar 

  15. 15.

    Mao C, Song Y, Chen L, Ji J, Li J, Yuan X, Yang Z, Ayoko GA, Frost RL, Theiss F (2019) Human health risks of heavy metals in paddy rice based on transfer characteristics of heavy metals from soil to rice. CATENA 175:339–348. https://doi.org/10.1016/j.catena.2018.12.029

    CAS  Article  Google Scholar 

  16. 16.

    Lian M, Wang J, Sun L, Xu Z, Tang J, Yan J, Zeng X (2019) Profiles and potential health risks of heavy metals in soil and crops from the watershed of Xi River in Northeast China. Ecotox Environ Safe 169:442–448. https://doi.org/10.1016/j.ecoenv.2018.11.046

    CAS  Article  Google Scholar 

  17. 17.

    Njuguna SM, Makokha VA, Yan X, Gituru RW, Wang Q, Wang J (2019) Health risk assessment by consumption of vegetables irrigated with reclaimed waste water: a case study in Thika (Kenya). J Environ Manag 231:576–581. https://doi.org/10.1016/j.jenvman.2018.10.088

    CAS  Article  Google Scholar 

  18. 18.

    Du Y, Chen L, Ding P, Liu L, He Q, Chen B, Duan Y (2019) Different exposure profile of heavy metal and health risk between residents near a Pb-Zn mine and a Mn mine in Huayuan county, South China. Chemosphere 216:352–364. https://doi.org/10.1016/j.chemosphere.2018.10.142

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Ozturk A, Yarci C, Ozyigit II (2017) Assessment of heavy metal pollution in Istanbul using plant (Celtis australis L.) and soil assays. Biotechnol Biotechnol Equip 31(5):948–954. https://doi.org/10.1080/13102818.2017.1353922

    CAS  Article  Google Scholar 

  20. 20.

    Tripathi AD, Mishra R, Maurya KK, Singh RB, Wilson DW (2019) Chapter 1 - Estimates for world population and global food availability for global health. In: Singh RB, Watson RR, Takahashi T (eds) The role of functional food security in global health. Academic Press, pp 3–24. doi:https://doi.org/10.1016/B978-0-12-813148-0.00001-3

  21. 21.

    Hussain S, Rengel Z, Qaswar M, Amir M, Zafar-ul-Hye M (2019) Arsenic and heavy metal (cadmium, lead, mercury and nickel) contamination in plant-based foods. In: Ozturk M, Hakeem KR (eds) Plant and human health, Volume 2: Phytochemistry and molecular aspects. Springer International Publishing, Cham, pp 447–490. doi:https://doi.org/10.1007/978-3-030-03344-6_20

  22. 22.

    Farha W, Abd El-Aty AM, Rahman MM, Jeong JH, Shin HC, Wang J, Shin SS, Shim JH (2018) Analytical approach, dissipation pattern and risk assessment of pesticide residue in green leafy vegetables: a comprehensive review. Biomed Chromatogr : BMC 32(1). https://doi.org/10.1002/bmc.4134

  23. 23.

    Conrad Z, Raatz S, Jahns L (2018) Greater vegetable variety and amount are associated with lower prevalence of coronary heart disease: National Health and Nutrition Examination Survey, 1999–2014. Nutr J 17(1):67. https://doi.org/10.1186/s12937-018-0376-4

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Krishnaswamy K, Gayathri R (2018) Nature’s bountiful gift to humankind: vegetables & fruits & their role in cardiovascular disease & diabetes. Indian J Med Res 148(5):569–595. https://doi.org/10.4103/ijmr.IJMR_1780_18

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Conrad Z, Thomson J, Jahns L (2018) Prospective analysis of vegetable amount and variety on the risk of all-cause and cause-specific mortality among US adults, 1999–2011. Nutrients 10(10):1377

    Article  Google Scholar 

  26. 26.

    Osredkar J, Sustar N (2011) Copper and zinc, biological role and significance of copper/zinc imbalance. J Clinic Toxicol S3 (001). https://doi.org/10.4172/2161-0495.S3-001

  27. 27.

    Prasad AS (2009) Impact of the discovery of human zinc deficiency on health. J Am Coll Nutr 28(3):257–265

    CAS  Article  Google Scholar 

  28. 28.

    Kokubo Y, Saito I, Iso H, Yamagishi K, Yatsuya H, Ishihara J, Maruyama K, Inoue M, Sawada N, Tsugane S (2018) Dietary magnesium intake and risk of incident coronary heart disease in men: a prospective cohort study. Clin Nutr (Edinburgh, Scotland) 37(5):1602–1608. https://doi.org/10.1016/j.clnu.2017.08.006

    CAS  Article  Google Scholar 

  29. 29.

    Fang X, Wang K, Han D, He X, Wei J, Zhao L, Imam MU, Ping Z, Li Y, Xu Y, Min J, Wang F (2016) Dietary magnesium intake and the risk of cardiovascular disease, type 2 diabetes, and all-cause mortality: a dose-response meta-analysis of prospective cohort studies. BMC Med 14(1):210–210. https://doi.org/10.1186/s12916-016-0742-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Rizk M, Guilloteau A, Mouillot T, Thiefin G, Bronowicki JP, Richou C, Doffoel M, Diab Assaf M, Hillon P, Cottet V (2019) Dietary components modulate the risk of hepatocellular carcinoma in cirrhotic patients. Nutr Res (New York, NY) 61:82–94. https://doi.org/10.1016/j.nutres.2018.10.002

    CAS  Article  Google Scholar 

  31. 31.

    Ruz M, Carrasco F, Rojas P, Basfi-Fer K, Hernandez MC, Perez A (2019) Nutritional effects of zinc on metabolic syndrome and type 2 diabetes: mechanisms and main findings in human studies. Biol Trace Elem Res 188(1):177–188. https://doi.org/10.1007/s12011-018-1611-8

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Qu R, Jia Y, Liu J, Jin S, Han T, Na L (2018) Dietary flavonoids, copper intake, and risk of metabolic syndrome in Chinese adults. Nutrients 10(8):991. https://doi.org/10.3390/nu10080991

    CAS  Article  PubMed Central  Google Scholar 

  33. 33.

    Kung WJ, Shih CT, Lee CH, Lin CC (2018) The divalent elements changes in early stages of chronic kidney disease. Biol Trace Elem Res 185(1):30–35. https://doi.org/10.1007/s12011-017-1228-3

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Severoglu Z, Ozyigit II, Dogan I, Kurmanbekova G, Demir G, Yalcin IE, Kari GK (2015) The usability of Juniperus virginiana L. as a biomonitor of heavy metal pollution in Bishkek City, Kyrgyzstan. Biotechnol Biotechnol Equip 29(6):1104–1112. https://doi.org/10.1080/13102818.2015.1072478

    CAS  Article  Google Scholar 

  35. 35.

    Ozyigit II, Yalcin B, Turan S, Saracoglu IA, Karadeniz S, Yalcin IE, Demir G (2018) Investigation of heavy metal level and mineral nutrient status in widely used medicinal plants’ leaves in Turkey: insights into health implications. Biol Trace Elem Res 182(2):387–406. https://doi.org/10.1007/s12011-017-1070-7

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Ali MHH, Al-Qahtani KM (2012) Assessment of some heavy metals in vegetables, cereals and fruits in Saudi Arabian markets. Egypt J Aqua Res 38(1):31–37. https://doi.org/10.1016/j.ejar.2012.08.002

    Article  Google Scholar 

  37. 37.

    Saljnikov E, Mrvić V, Čakmak D, Jaramaz D, Perović V, Antić-Mladenović S, Pavlović P (2019) Pollution indices and sources appointment of heavy metal pollution of agricultural soils near the thermal power plant. Environ Geochem Health. https://doi.org/10.1007/s10653-019-00281-y

  38. 38.

    Dong B, Zhang R, Gan Y, Cai L, Freidenreich A, Wang K, Guo T, Wang H (2019) Multiple methods for the identification of heavy metal sources in cropland soils from a resource-based region. Sci Total Environ 651:3127–3138. https://doi.org/10.1016/j.scitotenv.2018.10.130

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Peng H, Chen Y, Weng L, Ma J, Ma Y, Li Y, Islam MS (2019) Comparisons of heavy metal input inventory in agricultural soils in north and south China: a review. Sci Total Environ 660:776–786. https://doi.org/10.1016/j.scitotenv.2019.01.066

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Huang Y, Wang L, Wang W, Li T, He Z, Yang X (2019) Current status of agricultural soil pollution by heavy metals in China: a meta-analysis. Sci Total Environ 651:3034–3042. https://doi.org/10.1016/j.scitotenv.2018.10.185

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Ahmadi Doabi S, Karami M, Afyuni M (2019) Heavy metal pollution assessment in agricultural soils of Kermanshah province, Iran. Environ Earth Sci 78(3):70. https://doi.org/10.1007/s12665-019-8093-7

    CAS  Article  Google Scholar 

  42. 42.

    Jadoon WA, Malik RN (2019) Geochemical approach for heavy metals in suburban agricultural soils of Sialkot, Pakistan. SN Applied Sciences 1(2):161. https://doi.org/10.1007/s42452-019-0167-3

    CAS  Article  Google Scholar 

  43. 43.

    Kang M-J, Kwon YK, Yu S, Lee P-K, Park H-S, Song N (2019) Assessment of Zn pollution sources and apportionment in agricultural soils impacted by a Zn smelter in South Korea. J Hazard Mater 364:475–487. https://doi.org/10.1016/j.jhazmat.2018.10.046

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Chetty S, Pillay L (2019) Assessing the influence of human activities on river health: a case for two South African rivers with differing pollutant sources. Environ Monit Assess 191(3):168. https://doi.org/10.1007/s10661-019-7308-4

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Zanor GA, García MG, Venegas-Aguilera LE, Saldaña-Robles A, Saldaña-Robles N, Martínez-Jaime OA, Segoviano-Garfias JJN, Ramírez-Santoyo LF (2019) Sources and distribution of arsenic in agricultural soils of Central Mexico. J Soils Sediments 19:2795–2808. https://doi.org/10.1007/s11368-019-02269-8

    CAS  Article  Google Scholar 

  46. 46.

    Kaur I, Gupta A, Singh BP, Sharma S, Kumar A (2019) Assessment of radon and potentially toxic metals in agricultural soils of Punjab, India. Microchem J 146:444–454. https://doi.org/10.1016/j.microc.2019.01.028

    CAS  Article  Google Scholar 

  47. 47.

    Ndungu AW, Yan X, Makokha VA, Githaiga KB, Wang J (2019) Occurrence and risk assessment of heavy metals and organochlorine pesticides in surface soils, Central Kenya. J Environ Health Sci Eng. https://doi.org/10.1007/s40201-018-00326-x

  48. 48.

    Spahić MP, Manojlović D, Tančić P, Cvetković Ž, Nikić Z, Kovačević R, Sakan S (2019) Environmental impact of industrial and agricultural activities to the trace element content in soil of Srem (Serbia). Environ Monit Assess 191(3):133. https://doi.org/10.1007/s10661-019-7268-8

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Ozyigit II, Uras ME, Yalcin IE, Severoglu Z, Demir G, Borkoev B, Salieva K, Yucel S, Erturk U, Solak AO (2019) Heavy metal levels and mineral nutrient status of natural walnut (Juglans regia L.) populations in Kyrgyzstan: nutritional values of kernels. Biol Trace Elem Res 189(1):277–290. https://doi.org/10.1007/s12011-018-1461-4

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    EPA US (1997) Exposure factors handbook (1997, final report). vol EPA/600/P-95/002F a-c, 1997. Washington

  51. 51.

    Rattan RK, Datta SP, Chhonkar PK, Suribabu K, Singh AK (2005) Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater—a case study. Agric Ecosyst Environ 109(3):310–322. https://doi.org/10.1016/j.agee.2005.02.025

    CAS  Article  Google Scholar 

  52. 52.

    FAO/WHO (2016) Working document for information and use in discussions related to contaminants and toxins in the GSCTFF. vol Codex Committee on Contaminants in Foods 10th Session. Netherlands

  53. 53.

    Pipoyan D, Beglaryan M, Stepanyan S, Merendino N (2019) Dietary exposure assessment of potentially toxic trace elements in fruits and vegetables sold in town of Kapan, Armenia. Biol Trace Elem Res 190(1):234–241. https://doi.org/10.1007/s12011-018-1522-8

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    EPA US (2019) Region 9, Regional screening levels tables. http://www.epagov/region9/superfund/prg/indexhtml. Accessed 1 March 2020

  55. 55.

    Guerra F, Trevizam AR, Muraoka T, Marcante NC, Canniatti-Brazaca SG (2012) Heavy metals in vegetables and potential risk for human health. Sci Agric 69:54–60. Retrieved from http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162012000100008&nrm=iso. Accessed 1 March 2020

  56. 56.

    Real MIH, Azam HM, Majed N (2017) Consumption of heavy metal contaminated foods and associated risks in Bangladesh. Environ Monit Assess 189(12):651. https://doi.org/10.1007/s10661-017-6362-z

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    EPA US (1999) Screening level ecological risk assessment protocol for hazardous waste combustion facilities, appendix E: toxicity reference values

  58. 58.

    Kabata-Pendias A, Pendias H (2011) Trace elements in soils and plants. 4th edition edn. CRC press. doi:https://doi.org/10.1201/b10158

  59. 59.

    Blum WEH, Horak O, Mentler A, Puschenreiter M (2014) Trace elements. In: Sabljic A (ed) Environmental and ecological chemistry. Encyclopedia of life support systems (EOLSS). developed under the auspices of the UNESCO, Oxford

    Google Scholar 

  60. 60.

    Kacar B (2015) Bitki Fizyolojisi. 1. baskı edn. Nobel Akademik Yayıncılık Ankara

  61. 61.

    Kabata-Pendias A, Mukherjee AB (2007) Plants. In: Trace elements from soil to human. Springer, Berlin Heidelberg, pp 57–65. https://doi.org/10.1007/978-3-540-32714-1_6

    Google Scholar 

  62. 62.

    Jain R, Tiwari A (2019) Boron: a dietary mineral for human health. Apollo Medicine 16(1):66–67. https://doi.org/10.4103/am.am_59_18

    Article  Google Scholar 

  63. 63.

    Nikkhah S, Dolatian M, Naghii MR, Zaeri F, Taheri SM (2015) Effects of boron supplementation on the severity and duration of pain in primary dysmenorrhea. Complement Ther Clin Pract 21(2):79–83. https://doi.org/10.1016/j.ctcp.2015.03.005

    Article  PubMed  Google Scholar 

  64. 64.

    Sahni S, Mangano KM, McLean RR, Hannan MT, Kiel DP (2015) Dietary approaches for bone health: lessons from the Framingham Osteoporosis Study. Curr Osteoporos Rep 13(4):245–255. https://doi.org/10.1007/s11914-015-0272-1

    Article  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Oura P, Auvinen J, Paananen M, Junno J-A, Niinimäki J, Karppinen J, Nurkkala M (2019) Dairy- and supplement-based calcium intake in adulthood and vertebral dimensions in midlife—the Northern Finland Birth Cohort 1966 Study. Osteoporos Int 30(5):985–994. https://doi.org/10.1007/s00198-019-04843-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Arredondo M, Núñez MT (2005) Iron and copper metabolism. Mol Asp Med 26(4):313–327. https://doi.org/10.1016/j.mam.2005.07.010

    CAS  Article  Google Scholar 

  67. 67.

    Linder MC, Hazegh-Azam M (1996) Copper biochemistry and molecular biology. Am J Clin Nutr 63(5):797s–811s. https://doi.org/10.1093/ajcn/63.5.797

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Zhang H, Zhabyeyev P, Wang S, Oudit GY (2019) Role of iron metabolism in heart failure: from iron deficiency to iron overload. Biochim Biophys Acta (BBA) - Mol Basis Dis 1865(7):1925–1937. https://doi.org/10.1016/j.bbadis.2018.08.030

    CAS  Article  Google Scholar 

  69. 69.

    WHO/FAO (2011) Joint FAO/WHO Food standards 699 Programme Codex Committee on Contaminant in Foods. vol CF/5INF/1.Fifth session. The Hagese, The Netherlands

  70. 70.

    Pohl HR, Wheeler JS, Murray HE (2013) Sodium and potassium in health and disease. Met Ions Life Sci 13:29–47. https://doi.org/10.1007/978-94-007-7500-8_2

    Article  PubMed  Google Scholar 

  71. 71.

    Swaminathan R (2003) Magnesium metabolism and its disorders. Clin Biochem Rev 24(2):47–66

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Cunningham J, Rodríguez M, Messa P (2012) Magnesium in chronic kidney disease stages 3 and 4 and in dialysis patients. Clin Kidney J 5(Suppl 1):i39–i51. https://doi.org/10.1093/ndtplus/sfr166

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Hoshida S, Yamashita N, Otsu K, Hori M (2002) The importance of manganese superoxide dismutase in delayed preconditioning: involvement of reactive oxygen species and cytokines. Cardiovasc Res 55(3):495–505. https://doi.org/10.1016/s0008-6363(02)00337-1

    CAS  Article  PubMed  Google Scholar 

  74. 74.

    Munoz D, Maynar M, Barrientos G, Siquier-Coll J, Bartolome I, Grijota FJ, Robles MC (2019) Effect of an acute exercise until exhaustion on the serum and urinary concentrations of cobalt, copper, and manganese among well-trained athletes. Biol Trace Elem Res 189(2):387–394. https://doi.org/10.1007/s12011-018-1500-1

    CAS  Article  PubMed  Google Scholar 

  75. 75.

    WHO/FAO (2001) Codex Alimentarius Commission. Food Additives and Contaminants. vol Joint FAO/WHO Food Standard programs, ALINORM 01/12A

  76. 76.

    King JC, Brown KH, Gibson RS, Krebs NF, Lowe NM, Siekmann JH, Raiten DJ (2016) Biomarkers of nutrition for development (BOND)-zinc review. J Nutr. https://doi.org/10.3945/jn.115.220079

  77. 77.

    Freeland-Graves JH, Sanjeevi N, Lee JJ (2015) Global perspectives on trace element requirements. J Trace Elem Med Biol 31:135–141. https://doi.org/10.1016/j.jtemb.2014.04.006

    CAS  Article  PubMed  Google Scholar 

  78. 78.

    Ha SK (2014) Dietary salt intake and hypertension. Electrolyte Blood Press 12(1):7–18. https://doi.org/10.5049/EBP.2014.12.1.7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Ticinesi A, Nouvenne A, Maalouf NM, Borghi L, Meschi T (2014) Salt and nephrolithiasis. Nephrol Dial Transplant 31(1):39–45. https://doi.org/10.1093/ndt/gfu243

    CAS  Article  PubMed  Google Scholar 

  80. 80.

    Aschale M, Sileshi Y, Kelly-Quinn M (2019) Health risk assessment of potentially toxic elements via consumption of vegetables irrigated with polluted river water in Addis Ababa, Ethiopia. Environ Syst Res 8(1):29. https://doi.org/10.1186/s40068-019-0157-x

    Article  Google Scholar 

  81. 81.

    Mandal R, Kaur S (2019) Impact of environmental pollution on trace elements in vegetables and associated potential risk to human health in industrial town Mandi-gobindgarh (India). Chemosphere 219:574–587. https://doi.org/10.1016/j.chemosphere.2018.12.034

    CAS  Article  PubMed  Google Scholar 

  82. 82.

    Sultana MS, Rana S, Yamazaki S, Aono T, Yoshida S (2017) Health risk assessment for carcinogenic and non-carcinogenic heavy metal exposures from vegetables and fruits of Bangladesh. Cogent Environ Sci 3(1):1291107. https://doi.org/10.1080/23311843.2017.1291107

    CAS  Article  Google Scholar 

  83. 83.

    Saha S, Kalia P, Sarkar SK (2018) Evaluation of lettuce genotypes for mineral content. Indian J Hortic 75(4):613–618. https://doi.org/10.5958/0974-0112.2018.00102.0

    Article  Google Scholar 

  84. 84.

    Rahmdel S, Rezaei M, Ekhlasi J, Zarei SH, Akhlaghi M, Abdollahzadeh SM, Sefidkar R, Mazloomi SM (2018) Heavy metals (Pb, Cd, Cu, Zn, Ni, Co) in leafy vegetables collected from production sites: their potential health risk to the general population in Shiraz, Iran. Environ Monit Assess 190(11):650. https://doi.org/10.1007/s10661-018-7042-3

    CAS  Article  PubMed  Google Scholar 

  85. 85.

    Hussain A, Priyadarshi M, Dubey S (2019) Experimental study on accumulation of heavy metals in vegetables irrigated with treated wastewater. Appl Water Sci 9(5):122. https://doi.org/10.1007/s13201-019-0999-4

    CAS  Article  Google Scholar 

  86. 86.

    Bhatti S, Baig JA, Kazi TG, Afridi HI, Pathan AA (2019) Macro and micro mineral composition of Pakistani common spices: a case study. J Food Measur Charact 13(4):2529–2541. https://doi.org/10.1007/s11694-019-00173-w

    Article  Google Scholar 

  87. 87.

    Ntuli NR (2019) Nutrient content of scarcely known wild leafy vegetables from northern KwaZulu-Natal, South Africa. S Afr J Bot 127:19–24. https://doi.org/10.1016/j.sajb.2019.08.033

    Article  Google Scholar 

  88. 88.

    Gowele VF, Kinabo J, Jumbe T, Kirschmann C, Frank J, Stuetz W (2019) Provitamin A carotenoids, tocopherols, ascorbic acid and minerals in indigenous leafy vegetables from Tanzania. Foods 8(1):35

    CAS  Article  Google Scholar 

  89. 89.

    Cvetković BR, Pezo LL, Mišan A, Mastilović J, Kevrešan Ž, Ilić N, Filipčev B (2019) The effects of osmotic dehydration of white cabbage on polyphenols and mineral content. LWT 110:332–337. https://doi.org/10.1016/j.lwt.2019.05.001

    CAS  Article  Google Scholar 

  90. 90.

    Ejoh SI, Wireko-Manu FD, Page D, Renard CMGC (2019) Traditional green leafy vegetables as underutilised sources of micronutrients in a rural farming community in south-west Nigeria I: estimation of vitamin C, carotenoids and mineral contents. S Afr J Clin Nutr 1–6. doi:https://doi.org/10.1080/16070658.2019.1652963

  91. 91.

    Jomova K, Baros S, Valko M (2012) Redox active metal-induced oxidative stress in biological systems. Transit Met Chem 37(2):127–134. https://doi.org/10.1007/s11243-012-9583-6

    CAS  Article  Google Scholar 

  92. 92.

    Andreini C, Bertini I (2012) A bioinformatics view of zinc enzymes. J Inorg Biochem 111:150–156. https://doi.org/10.1016/j.jinorgbio.2011.11.020

    CAS  Article  PubMed  Google Scholar 

  93. 93.

    Mackenzie GG, Salvador GA, Romero C, Keen CL, Oteiza PI (2011) A deficit in zinc availability can cause alterations in tubulin thiol redox status in cultured neurons and in the developing fetal rat brain. Free Radic Biol Med 51(2):480–489. https://doi.org/10.1016/j.freeradbiomed.2011.04.028

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Filiz E, Saracoglu IA, Ozyigit II, Yalcin B (2019) Comparative analyses of phytochelatin synthase (PCS) genes in higher plants. Biotechnol Biotechnol Equip 33(1):178–194. https://doi.org/10.1080/13102818.2018.1559096

    CAS  Article  Google Scholar 

  95. 95.

    Hagos M, Chandravanshi BS (2016) Levels of essential and toxic metals in fenugreek seeds (Trigonella Foenum-Graecum L.) cultivated in different parts of Ethiopia. Braz J Food Technol 19:e2015059

    Article  Google Scholar 

  96. 96.

    Schmid NB, Giehl RFH, Döll S, Mock H-P, Strehmel N, Scheel D, Kong X, Hider RC, von Wirén N (2014) Feruloyl-CoA 6′-hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in Arabidopsis. Plant Physiol 164(1):160–172. https://doi.org/10.1104/pp.113.228544

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Tsai H-H, Schmidt W (2017) One way. Or another? Iron uptake in plants. New Phytol 214(2):500–505. https://doi.org/10.1111/nph.14477

    CAS  Article  PubMed  Google Scholar 

  98. 98.

    Sabeen M, Mahmood Q, Ebadi AG, Bhatti ZA, Faridullah IM, Kakar A, Bilal M, Arshad HM, Shahid N (2019) Consequences of health risk assessment of wastewater irrigation in Pakistan. Toxicol Environ Chem 101:1–23. https://doi.org/10.1080/02772248.2019.1619335

    CAS  Article  Google Scholar 

  99. 99.

    Waheed H, Ilyas N, Iqbal Raja N, Mahmood T, Ali Z (2019) Heavy metal phyto-accumulation in leafy vegetables irrigated with municipal wastewater and human health risk repercussions. Int J Phytoremediat 21(2):170–179. https://doi.org/10.1080/15226514.2018.1540547

    CAS  Article  Google Scholar 

  100. 100.

    Korshunova YO, Eide D, Gregg Clark W, Lou Guerinot M, Pakrasi HB (1999) The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol Biol 40(1):37–44. https://doi.org/10.1023/a:1026438615520

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Obiora SC, Chukwu A, Chibuike G, Nwegbu AN (2019) Potentially harmful elements and their health implications in cultivable soils and food crops around lead-zinc mines in Ishiagu, Southeastern Nigeria. J Geochem Explor 204:289–296. https://doi.org/10.1016/j.gexplo.2019.06.011

    CAS  Article  Google Scholar 

  102. 102.

    Nica DV, Draghici GA, Andrica F-M, Popescu S, Coricovac DE, Dehelean CA, Gergen II, Kovatsi L, Coleman MD, Tsatsakis A (2019) Short-term effects of very low dose cadmium feeding on copper, manganese and iron homeostasis: a gastropod perspective. Environ Toxicol Pharmacol 65:9–13. https://doi.org/10.1016/j.etap.2018.10.005

    CAS  Article  PubMed  Google Scholar 

  103. 103.

    Wiseman CL, Zereini F, Puttmann W (2013) Traffic-related trace element fate and uptake by plants cultivated in roadside soils in Toronto, Canada. Sci Total Environ 442:86–95. https://doi.org/10.1016/j.scitotenv.2012.10.051

    CAS  Article  PubMed  Google Scholar 

  104. 104.

    Kero IT, Eidem PA, Ma Y, Indresand H, Aarhaug TA, Grådahl S (2019) Airborne emissions from Mn ferroalloy production. JOM 71(1):349–365. https://doi.org/10.1007/s11837-018-3165-9

    CAS  Article  Google Scholar 

  105. 105.

    Rahman M, Islam MA (2019) Concentrations and health risk assessment of trace elements in cereals, fruits, and vegetables of Bangladesh. Biol Trace Elem Res 191(1):243–253. https://doi.org/10.1007/s12011-018-1596-3

    CAS  Article  PubMed  Google Scholar 

  106. 106.

    Sun K, Wen D, Yang N, Wang K, Li X, Yu L (2019) Heavy metal and soil nutrient accumulation and ecological risk assessment of vegetable fields in representative facilities in Shandong Province, China. Environ Monit Assess 191(4):240. https://doi.org/10.1007/s10661-019-7396-1

    CAS  Article  PubMed  Google Scholar 

  107. 107.

    Weyens N, Thijs S, Popek R, Witters N, Przybysz A, Espenshade J, Gawronska H, Vangronsveld J, Gawronski SW (2015) The role of plant-microbe interactions and their exploitation for phytoremediation of air pollutants. Int J Mol Sci 16(10):25576–25604. https://doi.org/10.3390/ijms161025576

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Wei X, Lyu S, Yu Y, Wang Z, Liu H, Pan D, Chen J (2017) Phylloremediation of air pollutants: exploiting the potential of plant leaves and leaf-associated microbes. Front Plant Sci 8:1318. https://doi.org/10.3389/fpls.2017.01318

    Article  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Zhang H, Mao Z, Huang K, Wang X, Cheng L, Zeng L, Zhou Y, Jing T (2019) Multiple exposure pathways and health risk assessment of heavy metal(loid)s for children living in fourth-tier cities in Hubei Province. Environ Int 129:517–524. https://doi.org/10.1016/j.envint.2019.04.031

    CAS  Article  PubMed  Google Scholar 

  110. 110.

    Yalcin IE, Ozyigit I, Dogan I, Demir G, Yarci C (2020) Use of Turkish red pine tree for monitoring heavy metal pollution in Istanbul/Turkey. Pol J Environ Res 29(5):3881–3889. https://doi.org/10.15244/pjoes/114505

  111. 111.

    Liu J, Luo LQ (2019) Uptake and transport of Pb across the iron plaque of waterlogged dropwort (Oenanthe javanica DC.) based on micro-XRF and XANES. Plant Soil 441(1–2):191–205. https://doi.org/10.1007/s11104-019-04106-w

    CAS  Article  Google Scholar 

  112. 112.

    Mukhamedova N, Pomfret R (2019) Why does sharecropping survive? Agrarian institutions and contract choice in Kazakhstan and Uzbekistan. Comp Econ Stud 61(4):576–597. https://doi.org/10.1057/s41294-019-00105-z

    Article  Google Scholar 

  113. 113.

    Shahid M, Dumat C, Khalid S, Schreck E, Xiong T, Niazi NK (2017) Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. J Hazard Mater 325:36–58. https://doi.org/10.1016/j.jhazmat.2016.11.063

    CAS  Article  PubMed  Google Scholar 

  114. 114.

    Akguc N, Ozyigit I, Yarci C (2008) Pyracantha coccinea Roem.(Rosaceae) as a biomonitor for Cd, Pb and Zn in Mugla province (Turkey). Pak J Bot 40:1767–1776

    CAS  Google Scholar 

  115. 115.

    Osma E, Ozyigit I, Zeliha L, Demir G, Serin M (2011) Determination of heavy metal concentrations in tomato (Lycopersicon esculentum Miller) grown in different station types. Rom Biotech Lett 17:6962–6974

    Google Scholar 

  116. 116.

    Akguc N, Ozyigit I, Yasar U, Leblebici Z, Yarci C (2010) Use of Pyracantha coccinea Roem. As a possible biomonitor for the selected heavy metals. Int J Environ Sci Technol 7(3):427–434. https://doi.org/10.1007/BF03326152

    CAS  Article  Google Scholar 

  117. 117.

    Altay V, Ozyigit I, Keskin M, Demir G, Yalcin E (2013) An ecological study of endemic plant Polygonum istanbulicum Keskin and its environs. Pak J Bot 45:455–459

    Google Scholar 

  118. 118.

    Ozyigit II, Eskin B, Uras ME, Sen U, Erdogan BE, Kurmanbekova G, Severoglu Z, Yalcin IE (2018) Some heavy metals and mineral nutrients of narrow endemic Cirsium byzantinum steud., from Istanbul, Turkey: plant-soil interactions. Fresenius Environ Bull 27(2):668–674

    CAS  Google Scholar 

  119. 119.

    Srivastava A, Siddiqui NA, Koshe RK, Singh VK Human health effects emanating from airborne heavy metals due to natural and anthropogenic activities: a review. In, Singapore, 2018. Advances in health and environment safety. Springer Singapore, pp 279–296

  120. 120.

    Osma E, Ozyigit I, Demir G, Yasar U (2014) Assesment of some heavy metals in wild type and cultivated purslane (portulaca oleracea L.) and soils in Istanbul, Turkey. Fresenius Environ Bull 23

  121. 121.

    Dogan I, Ozyigit II, Demir G (2014) Influence of aluminum on mineral nutrient uptake and accumulation in Urtica pilulifera L. J Plant Nutr 37(3):469–481. https://doi.org/10.1080/01904167.2013.864306

    CAS  Article  Google Scholar 

  122. 122.

    DalCorso G, Fasani E, Manara A, Visioli G, Furini A (2019) Heavy metal pollutions: state of the art and innovation in phytoremediation. Int J Mol Sci 20(14):ARTN 3412. https://doi.org/10.3390/ijms20143412

    CAS  Article  Google Scholar 

  123. 123.

    Mourato MP, Moreira IN, Leitão I, Pinto FR, Sales JR, Martins LL (2015) Effect of heavy metals in plants of the genus Brassica. Int J Mol Sci 16(8):17975–17998. https://doi.org/10.3390/ijms160817975

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Islam MS, Ahmed MK, Habibullah-Al-Mamun M, Masunaga S (2014) Trace metals in soil and vegetables and associated health risk assessment. Environ Monit Assess 186(12):8727–8739. https://doi.org/10.1007/s10661-014-4040-y

    CAS  Article  PubMed  Google Scholar 

  125. 125.

    Shaheen N, Irfan NM, Khan IN, Islam S, Islam MS, Ahmed MK (2016) Presence of heavy metals in fruits and vegetables: health risk implications in Bangladesh. Chemosphere 152:431–438. https://doi.org/10.1016/j.chemosphere.2016.02.060

    CAS  Article  PubMed  Google Scholar 

  126. 126.

    Zhou H, Yang W-T, Zhou X, Liu L, Gu J-F, Wang W-L, Zou J-L, Tian T, Peng P-Q, Liao B-H (2016) Accumulation of heavy metals in vegetable species planted in contaminated soils and the health risk assessment. Int J Environ Res Public Health 13(3):289

    Article  Google Scholar 

  127. 127.

    Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2014) Heavy metal toxicity and the environment. Exp Suppl 101:133–164. https://doi.org/10.1007/978-3-7643-8340-4_6

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Hasan Can or Ibrahim Ilker Ozyigit.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 214 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Can, H., Ozyigit, I.I., Can, M. et al. Environment-Based Impairment in Mineral Nutrient Status and Heavy Metal Contents of Commonly Consumed Leafy Vegetables Marketed in Kyrgyzstan: a Case Study for Health Risk Assessment. Biol Trace Elem Res 199, 1123–1144 (2021). https://doi.org/10.1007/s12011-020-02208-6

Download citation

Keywords

  • Leafy vegetables
  • Heavy metals
  • Mineral nutrients
  • Hazard quotient
  • Carcinogenic risk