Effects of Selenium-Deprived Habitat on the Immune Index and Antioxidant Capacity of Przewalski’s Gazelle

Abstract

Przewalski’s gazelle (Procapra przewalskii) is an endangered ungulate in the Qinghai–Tibet Plateau of China. This study aimed to determine the influence of selenium (Se) deprivation in the natural habitat on the immune index and antioxidant capacity of P. przewalskii. Samples of soil and forage were collected from affected and healthy areas, and animal tissues were collected from affected and healthy P. przewalskii. The samples were used for measuring mineral content and for hematological and biochemical analyses. The results showed that Se concentrations were significantly lower in the soil and mixed forage samples from the affected area than in those from the healthy area. The Se concentrations were significantly lower in blood and hair samples from affected P. przewalskii than in those from healthy P. przewalskii. Meanwhile, hemoglobin, packed cell volume, and platelet count of affected P. przewalskii were significantly lower than those of healthy P. przewalskii. The serum level of glutathione peroxidase and total antioxidant capacity were significantly lower and the serum levels of malondialdehyde, total nitric oxide synthase, and lipid peroxide were significantly higher in affected P. przewalskii. The serum levels of interleukin (IL)-1β, IL-2, tumor necrosis factor-alpha, immunoglobulin A (IgA), and IgG significantly decreased and the serum levels of IL-6 and IgM significantly reduced in affected P. przewalskii compared with healthy P. przewalskii. Therefore, the findings indicated that Se deprivation in soil and forage caused oxidative stress damage and posed a serious threat to the immune function of P. przewalskii.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Li Z, Jiang Z (2008) Sexual segregation in Tibetan gazelle: a test of the activity budget hypothesis. Proc Zool Soc Lond 274(4):327–331

    Google Scholar 

  2. 2.

    Lian XM, Li XX, Zhou DX, Yan PS (2012) Avoidance distance from Qinghai–Tibet highway in sympatric Tibetan antelope and gazelle. Transport Res Part D-Tr E 17(8):585–587

    Google Scholar 

  3. 3.

    Bhatnagar YV, Wangchuk R, Mishra C (2006) Decline of the Tibetan gazelle, Procapra picticaudata in Ladakh, India. Oryx 40(02):229–232

    Google Scholar 

  4. 4.

    Shen XY, Li X, Zhang RD (2010) Studies of “unsteady gait disease” of the Tibetan gazelle (Procapra picticaudata). J Wildl Dis 46(2):560–563

    PubMed  Google Scholar 

  5. 5.

    Zhang L, Liu JZ, Wang DJ, Wang H, Wu YL, Lü Z (2018) Fencing for conservation?—The impacts of fencing on grasslands and the endangered Przewalski’s gazelle on the Tibetan Plateau. Sci China Life Sci 61(12):145–147

    Google Scholar 

  6. 6.

    Zhang F, Jiang Z (2006) Mitochondrial phylogeography and genetic diversity of Tibetan gazelle (Procapra picticaudata): implications for conservation. Mol Phylogenet Evolution 41(2):313–321

    CAS  Google Scholar 

  7. 7.

    Li ZQ, Jiang ZG, Li CW (2008) Dietary overlap of Przewalski’s gazelle, Tibetan gazelle, and Tibetan sheep on the Qinghai-Tibet plateau. J Wildlife Manage 72(4):944–948

    Google Scholar 

  8. 8.

    Huo B, Wu T, Song CJ, Shen XY (2019) Studies of selenium deficiency in the Wumeng semi-fine wool sheep. Biol Trace Elem Res 194(1):152–158. https://doi.org/10.1007/s12011-019-01751-1

  9. 9.

    Li XP, Li GP, Wang GH, Li PL, Wang GP, Jin YP, Jian YN (2018) Analysis of causes of copper and selenium deficiency in Sanjiaocheng sheep farms. Qinghai J Anim Sci Vet Med 48(06):38–39

    Google Scholar 

  10. 10.

    Huo B, Wu T, Song CJ, She XY (2019) Effects of selenium deficiency in alpine meadow on antioxidant systems of yaks. China Anim Husb Vet Med 46(04):1053–1062

    Google Scholar 

  11. 11.

    Shen XY, Huo B, Min XY, Wu T, Liao JJ (2018) Assessment of mineral nutrition of forage in the natural habitat of Przewalski’s gazelle (Procapra przewalskii). Acta Pratacul Sin 27(3):108–115

    Google Scholar 

  12. 12.

    Chi YK, Huo B, Shen XY (2020) Distribution characteristics of selenium nutrition on the natural habitat of Przewalski’s gazelle. Pol J Environ Stud 29(1):67–77

    CAS  Google Scholar 

  13. 13.

    Li Z, Beauchamp JG (2010) Nonrandom mixing between groups of Przewalski’s gazelle and Tibetan gazelle. J Mammal 91(3):674–680

    Google Scholar 

  14. 14.

    Chi YK, Huang DH, Song SZ, Huo B, Wu T, Song CJ, Shen XY (2019) Effect of seasonal variation on mineral nutrient of forage in habitat of Przewalski’s gazelle (Procapra przewalskii). Fresenius Environ Bull 28(2A):1446–1453

    Google Scholar 

  15. 15.

    Song CJ, Shen XY (2019) Effects of environmental zinc deficiency on antioxidant system function in Wumeng semi-fine wool sheep. Biol Trace Elem Res:1–7. https://doi.org/10.1007/s12011-019-01840-1

  16. 16.

    Chi YK, Zhang ZZ, Song CJ, Xiong KN, Shen XY (2020) Effects of fertilization on physiological and biochemical parameters of Wumeng sheep in China’s Wumeng prairie. Pol J Environ Stud 29(1):79–85

    CAS  Google Scholar 

  17. 17.

    Liu KY, Liu HL, Zhang T, Mu LL, Liu XQ, Li GY (2019) Effects of vitamin E and selenium on growth performance, antioxidant capacity, and metabolic parameters in growing furring blue foxes (Alopex lagopus). Biol Trace Elem Res 192(2):183–195

    CAS  PubMed  Google Scholar 

  18. 18.

    Helder L, Egon H, Carolina R, Jimenez PS, Correa DB (2019) Effects of maternal dietary cottonseed on the profile of minerals in the testes of the lamb. Biol Trace Elem Res. https://doi.org/10.1007/s12011-019-01971-5

  19. 19.

    Huo B, Wu T, Song CJ, Shen XY (2020) Effects of selenium deficiency in the environment on antioxidant systems of Wumen semi-fine wool sheep. Pol J Environ Stud 29(2):1–9

    Google Scholar 

  20. 20.

    Shen XY, Zhang J, Zhang RD (2014) Phosphorus metabolic disorder of Guizhou semi-fine wool sheep. PLoS One 9(2):e89472

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Liu Z (2007) Effect of a copper, selenium and cobalt soluble glass bolus given to grazing yaks. Asian Austral J Anim Sci 20(9):1433–1437

    CAS  Google Scholar 

  22. 22.

    Corbera JA, Morales M, Pulido M, Gutierrez C (2003) An outbreak of nutritional muscular dystrophy in dromedary camels. J Appl Anim Res 23(1):117–122

    Google Scholar 

  23. 23.

    Grace ND, Knowles SO (2002) A reference curve using blood selenium concentration to diagnose selenium deficiency and predict growth responses in lambs. N Z Vet J 50(4):163–165

    CAS  PubMed  Google Scholar 

  24. 24.

    Zhang L, Jiao T, Zheng ZC, Liu CQ, Zhou XH, Feng RL (2005) Analysis of Se concentrations in study farm of Sanjiaocheng in Qinghai at different seasons. J Tradit Chin Vet Med 05:17–19

    Google Scholar 

  25. 25.

    Shen XY, Huo B, Wu T, Song CJ, Chi YK (2019) iTRAQ-based proteomic analysis to identify molecular mechanisms of the selenium deficiency response in the Przewalski’s gazelle. J Proteome 203:103389

    CAS  Google Scholar 

  26. 26.

    Zhang QJ, Zheng SF, Wang SC, Jiang ZH (2019) The effects of low selenium on DNA methylation in the tissues of chickens. Biol Trace Elem Res 191(2):474–484

    CAS  PubMed  Google Scholar 

  27. 27.

    Wu BY, Muhammad JM, Fang J, Peng X (2019) The protective role of selenium against AFB1-induced liver apoptosis by death receptor pathway in broilers. Biol Trace Elem Res 191(2):453–463

    CAS  PubMed  Google Scholar 

  28. 28.

    Petkova MTV, Ruseva BK, Atanasova BD (2017) Selenium deficiency as a risk factor for development of anemia. J Biomed Clin Res 10(1):9–17

    Google Scholar 

  29. 29.

    Huo B, Wu T, Xiao H, Shen XY (2019) Effect of copper contaminated pasture on mineral metabolism in the Wumeng semi-fine wool sheep. Asian J Ecotoxicol 14(6):1–9

  30. 30.

    Emmanuelchide O, Charle O, Uchenna O (2011) Hematological parameters in association with outcomes in sickle cell anemia patients0. Indian J Med Sci 65(9):393–401

    PubMed  Google Scholar 

  31. 31.

    Saban C (2019) Effect of dietary vitamin E, selenium and their combination on concentration of selenium, MDA, and antioxidant enzyme activities in some tissues of laying hens. Pakistan J Zool 51:1155–1161

    Google Scholar 

  32. 32.

    Aram S, Bahram DN, Siamak AR, Ehsan A (2019) Platelet selenium indices as useful diagnostic surrogate for assessment of selenium status in lambs: an experimental comparative study on the efficacy of sodium selenite vs selenium nanoparticles. Biol Trace Elem Res:1–9. https://doi.org/10.1007/s12011-019-01784-6

  33. 33.

    Han YH, Kim SU, Kwon TH, Lee DS, Ha HL (2012) Peroxiredoxin II is essential for preventing hemolytic anemia from oxidative stress through maintaining hemoglobin stability. Biochem Biophys Res Commun 426(3):427–432

    CAS  PubMed  Google Scholar 

  34. 34.

    Zhao J, Xing H, Liu C (2016) Effect of selenium deficiency on nitric oxide and heat shock proteins in chicken erythrocytes. Biol Trace Elem Res 171(1):208–213

    CAS  PubMed  Google Scholar 

  35. 35.

    Liao C, Hardison RC, Kenentt MJ (2018) Selenoproteins regulate stress erythroid progenitors and spleen microenvironment during stress erythropoiesis. Blood 131(23):2568–2580

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Kaushal N, Hegde S, Lumadue J, Paulson RF, Prabhu KS (2011) The regulation of erythropoiesis byselenium in mice. Antioxid Redox Signal 14(8):1403–1412

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Liao C, Carlson BA, Paulson RF (2018) The intricaterole of selenium and selenoproteins in erythropoiesis. Free Radical Bio Med 127(1):165–171

    CAS  Google Scholar 

  38. 38.

    Huo B, Wu T, Chi YK, Min XY, Shen XY (2019) Effect of molybdenum fertilizer treatment to copper pollution meadow on copper metabolism in Wumeng semi-fine wool sheep. Acta Ecologiae Animalis Domastici 40(07):44–49

    Google Scholar 

  39. 39.

    Zeng R, Muhammad UF, Zhang G, Tang ZC (2019) Dissecting the potential of selenoproteins extracted from selenium-enriched rice on physiological, biochemical and anti-ageing effects in vivo. Biol Trace Elem Res. https://doi.org/10.1007/s12011-019-01896-z

  40. 40.

    Wu L, Zhang H, Xu C, Xia C (2016) Critical thresholds of antioxidant and immune function parameters for Se deficiency prediction in dairy cows. Biol Trace Elem Res 172(2):320–325

    CAS  PubMed  Google Scholar 

  41. 41.

    Roman M, Jitaru P, Barbante C (2014) Selenium biochemistry and its role for human health. Metallomics 6(1):25–54

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Chen M, Mahfuz S, Cui Y, Jia LY, Liu ZJ, Song H (2019) The antioxidant status of serum and egg yolk in layer fed with mushroom stembase (Flammulina velutipes). Pak J Zool 52:389–392

    Google Scholar 

  43. 43.

    Herena YH, Naghum A, Marla JB, Lucia AS (2019) From selenium absorption to selenoprotein degradation. Biol Trace Elem Res 192(1):26–37

    Google Scholar 

  44. 44.

    Huma N, Sajid A, Khalid A, Wardah H, Moazama B, Shakeela P, Sadia M, Sajida M (2019) Toxic effect of insecticides mixtures on antioxidant enzymes in different organs of fish, Labeo rohita. Pak J Zool 51:1355–1361

    Google Scholar 

  45. 45.

    Iqra B, Moolchand M, Pershotam K, Saeed AS, Hira S (2019) Effect of dietary selenium yeast supplementation on morphology and antioxidant status in testes of young goat. Pak J Zool 51:979–988

    Google Scholar 

  46. 46.

    Meng T, Liu YL, Xie CY (2019) Effects of different selenium sources on laying performance, egg selenium concentration, and antioxidant capacity in laying hens. Biol Trace Elem Res 189(2):548–555

    CAS  PubMed  Google Scholar 

  47. 47.

    Xu J, Gong Y, Sun Y (2019) Impact of selenium deficiency on inflammation, oxidative stress, and phagocytosis in mouse macrophages. Biol Trace Elem Res. https://doi.org/10.1007/s12011-019-01775-7

  48. 48.

    Cao C, Fan R, Chen M, Li XJ, Xing MY, Zhu FT (2017) Inflammatory response occurs in veins of broiler chickens treated with a selenium deficiency diet. Biol Trace Elem Res 183(2):1–9

    Google Scholar 

  49. 49.

    Bakhshalinejad R, Reza AMK, Zoidis E (2018) Effects of different dietary sources and levels of selenium supplements on growth performance, antioxidant status and immune parameters in Ross 308 broiler chickens. Brit Poultry Sci 59(1):81–91

    CAS  Google Scholar 

  50. 50.

    Michael TH, Paul RC (2019) New directions for understanding the codon redefinition required for selenocysteine incorporation. Biol Trace Elem Res 192(1):18–25

    Google Scholar 

  51. 51.

    Pan TR, Liu TQ, Tan SR, Wan N, Zhang YM, Li S (2018) Lower selenoprotein T expression and immune response in the immune organs of broilers with exudative diathesis due to selenium deficiency. Biol Trace Elem Res 182(2):364–372

    CAS  PubMed  Google Scholar 

  52. 52.

    Amy S, Michelle J, Louise MCW, Amanda H (2010) Putative GTPase GIMAP1 is critical for the development of mature B and T lymphocytes. Blood 115(16):3249–3257

    Google Scholar 

  53. 53.

    Mosmann T, Bond M, Coffman R, Ohara J, Paul W (1986) T-cell and mast cell lines respond to B-cell stimulatory factor-I. P Natl Acad Sci USA 83:5654–56628

    CAS  Google Scholar 

  54. 54.

    Chang WC, Chen CH, Yu YM (2010) P385 chlorogenic acid attenuates adhesion molecules upregulation in IL-1β treated huvecs. Atherosclerosis Supp 11(2):98–98

    Google Scholar 

  55. 55.

    Ahmed KP, Zhang YM, Hang Y, Teng XH, Li S (2018) Selenium deficiency affects immune function by influencing selenoprotein and cytokine expression in chicken spleen. Biol Trace Elem Res 187(2):506–516

    Google Scholar 

  56. 56.

    Liu LN, Chen F, Qin SY, Ma JF, Li L, Jin TM, Zhao RL (2019) Effects of selenium-enriched yeast improved aflatoxin B1-induced changes in growth performance, antioxidation capacity, IL-2 and IFN-γ contents, and gene expression in mice. Biol Trace Elem Res 191(1):183–188

    CAS  PubMed  Google Scholar 

  57. 57.

    Michal K, Szabo P, Barbora D, Lukas L (2012) Upregulation of IL-6, IL-8 and CXCL-1 production in dermal fibroblasts by normal/malignant epithelial cells in vitro: Immunohistochemical and transcriptomic analyses. Biol Cell 104(12):738–751

    Google Scholar 

  58. 58.

    Sackesen C, Veen W, Akdis M, Soyer O, Zumkehr J, Ruckert B (2013) Suppression of B-cell activation and IgE, IgA, IgG1 and IgG4 production by mammalian telomeric oligonucleotides. Allergy 68(5):593–603

    CAS  PubMed  Google Scholar 

  59. 59.

    Lopez AJR, Rueda CU, Patrucco L, Juan IR (2011) Selective IgA deficiency and multiple sclerosis déficit selectivo de IgA y esclerosis múltiple. Neurología 26(6):375–377

    Google Scholar 

  60. 60.

    Launay P, Patry C, Lehuen A, Benoit P (1999) Alternative endocytic pathway for immunoglobulin A Fc receptors (CD89) depends on the lack of FcRy association and protects against degradation of bound ligand. J Biol Chem 274(11):7216–7225

    CAS  PubMed  Google Scholar 

  61. 61.

    Ashley G, Jeffrey C (2014) Effects of inorganic or organic selenium on immunoglobulins in swine. J Anim Sci Biotechno 4(2):47–47

    Google Scholar 

  62. 62.

    Quan P, Tan W, Xu C (2004) The effects of selenium deficiency, oxidative stress, coxsackievirus B infection on the pathogenesis of Keshan disease. J Xi'an Med Univ Chinese Edition 02:22–29

    Google Scholar 

  63. 63.

    Wang CR, Wang JQ, Zhao GQ, Zhou ZF, Wei HY (2009) Effects of supplementary vitamin E and selenium for cows on growth and immune of neonatal calves. Chinese J Vet Sci 12:3–14

    Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (41671041) and the Project of National Key Research and Development Program of China in the 13th five-year plan (2016YFC0502601).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaoyun Shen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huo, B., He, J. & Shen, X. Effects of Selenium-Deprived Habitat on the Immune Index and Antioxidant Capacity of Przewalski’s Gazelle. Biol Trace Elem Res 198, 149–156 (2020). https://doi.org/10.1007/s12011-020-02070-6

Download citation

Keywords

  • Procapra przewalskii
  • Se-deprived environment
  • Antioxidant function
  • Immunity
  • The Qinghai Lake Basin