Parvalbumin and Ubiquitin as Potential Biomarkers of Mercury Contamination of Amazonian Brazilian Fish


Recent studies have demonstrated the association of mercury (Hg) with some fish proteins, milk, and hair from individuals exposed to the element in the Amazon. However, few studies involve identifying biomarkers of mercury exposure. Therefore, the present study aimed to identify potential biomarkers of Hg exposure in fish. For this, the muscular tissues of two species of fish (Prochilodus lineatus and Mylossoma duriventre) that feed the Amazonian human population were analyzed. Through the analyses obtained by graphite furnace atomic absorption spectrometry (GFAAS), it was possible to identify four protein SPOTS where mercury was present. These SPOTS, identified by mass spectrometry (ESI-MS/MS), included parvalbumin and ubiquitin-40S ribosomal protein S27a, and these being metalloproteins with biomarker characteristics. In addition, the results show the intense Hg/protein ratio observed in the two proteins, which makes metalloproteins strong candidates for biomarkers of mercury exposure.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. 1.

    Berky AJ, Ryde IT, Feingold B et al (2018) Predictors of mitochondrial DNA copy number and damage in a mercury-exposed rural Peruvian population near artisanal and small-scale gold mining: an exploratory study. Environ Mol Mutagen.

  2. 2.

    Hacon S, Barrocas PRG, de Vasconcellos ACS et al (2008) An overview of mercury contamination research in the Amazon basin with an emphasis on Brazil. Cad saúde pública 24:1479–1492

    Article  Google Scholar 

  3. 3.

    Moraes PM, Santos FA, Cavecci B et al (2013) GFAAS determination of mercury in muscle samples of fish from Amazon, Brazil. Food Chem 141:2614–2617.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Passos CJS, Da Silva DS, Lemire M et al (2008) Daily mercury intake in fish-eating populations in the Brazilian Amazon. J Expo Sci Environ Epidemiol 18:76–87.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Bravo AG, Kothawala DN, Attermeyer K, Tessier E, Bodmer P, Ledesma JLJ, Audet J, Casas-Ruiz JP, Catalán N, Cauvy-Fraunié S, Colls M, Deininger A, Evtimova VV, Fonvielle JA, Fuß T, Gilbert P, Herrero Ortega S, Liu L, Mendoza-Lera C, Monteiro J, Mor JR, Nagler M, Niedrist GH, Nydahl AC, Pastor A, Pegg J, Gutmann Roberts C, Pilotto F, Portela AP, González-Quijano CR, Romero F, Rulík M, Amouroux D (2018) The interplay between total mercury, methylmercury and dissolved organic matter in fluvial systems: a latitudinal study across Europe. Water Res 144:172–182.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Dórea JG, Farina M, Rocha JBT (2013) Toxicity of ethylmercury (and Thimerosal): a comparison with methylmercury. J Appl Toxicol 33:700–711.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Molina CI, Gibon F-M, Sánchez Y, et al (2010) Implicancia ambiental del mercurio en ecosistemas acuáticos de la Amazonía: Situación en Bolivia. Rev Virtual REDESMA Oct 4

  8. 8.

    Cristina M, Jardim WF (2004) O COMPORTAMENTO DO METILMERCÚRIO (METILHg) NO AMBIENTE Márcia. Quim Nova 27:593–600

    Google Scholar 

  9. 9.

    Crespo-López ME, Macêdo GL, Pereira SID et al (2009) Mercury and human genotoxicity: critical considerations and possible molecular mechanisms. Pharmacol Res 60:212–220.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Woods JS, Heyer NJ, Russo JE, Martin MD, Farin FM (2014) Genetic polymorphisms affecting susceptibility to mercury neurotoxicity in children: summary findings from the casa Pia Children’s amalgam clinical trial. Neurotoxicology 44:288–302.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Arrifano GPF, de Oliveira MA, Souza-Monteiro JR, Paraense RO, Ribeiro-Dos-Santos A, Vieira JRDS, Silva ALDC, Macchi BM, do Nascimento JLM, Burbano RMRC-LM (2018) Role for apolipoprotein E in neurodegeneration and mercury intoxication. Front Biosci 1:229–241.

    Article  Google Scholar 

  12. 12.

    Sakamoto M, Tatsuta N, Izumo K et al (2018) Health impacts and biomarkers of prenatal exposure to Methylmercury: lessons from Minamata, Japan. Toxics 6:45.

    CAS  Article  PubMed Central  Google Scholar 

  13. 13.

    Sakaue M, Mori N, Makita M, Fujishima K, Hara S, Arishima K, Yamamoto M (2009) Acceleration of methylmercury-induced cell death of rat cerebellar neurons by brain-derived neurotrophic factor in vitro. Brain Res 1273:155–162.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Cavalcante J, Vieira S, Braga CP et al (2017) Mercury exposure : protein biomarkers of mercury exposure in Jaraqui fish from the Amazon region. Biol Trace Elem Res 183:164–171.

    CAS  Article  Google Scholar 

  15. 15.

    Wallace MAG, Kormos TM, Pleil JD (2016) Blood-borne biomarkers and bioindicators for linking exposure to health effects in environmental health science. J Toxicol Environ Health Part B 19:380–409.

    CAS  Article  Google Scholar 

  16. 16.

    Branco V, Caito S, Farina M, Teixeira da Rocha J, Aschner M, Carvalho C (2017) Biomarkers of mercury toxicity: past, present, and future trends. J Toxicol Environ Health B Crit Rev 20:119–154.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Yancheva V, Velcheva I, Stoyanova S, Georgieva (2016) Histological biomarkers in fish as a tool in ecological risk assessment and monitoring programs: a review.

  18. 18.

    Bittarello AC, Vieira JCS, Braga CP, de Paula Araújo WL, da Cunha Bataglioli I, da Silva JM, Buzalaf MAR, Fleuri LF, de Magalhães Padilha P (2019) Characterization of molecular biomarkers of mercury exposure to muscle tissue of Plagioscion squamosissimus and Colossoma macropomum from the Amazon region. Food Chem 276:247–254.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Vieira JCS, Cavecci B, Queiroz JV, Braga CP, Padilha CCF, Leite AL, Figueiredo WS, Buzalaf MAR, Zara LF, Padilha PM (2015) Determination of the mercury fraction linked to protein of muscle and liver tissue of Tucunaré (Cichla spp.) from the Amazon region of Brazil. Arch Environ Contam Toxicol 69:422–430.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Vieira JCS, Braga CP, de Oliveira G et al (2018) Correction to: mercury exposure: protein biomarkers of mercury exposure in Jaraqui fish from the Amazon region. Biol Trace Elem Res 183:172–172.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Vieira JCS, Braga CP, de Oliveira G et al (2017) Identification of protein biomarkers of mercury toxicity in fish. Environ Chem Lett 15:717–724.

    CAS  Article  Google Scholar 

  22. 22.

    Braga CP, Bittarello a. C, Padilha CCF, et al (2015) Mercury fractionation in dourada (Brachyplatystoma rousseauxii) of the Madeira River in Brazil using metalloproteomic strategies. Talanta 132:239–244.

  23. 23.

    UniProt (2016) Universal Protein Resource (UniProt). In: 2016

  24. 24.

    Cerbino MR, Vieira JCS, Braga CP, Oliveira G, Padilha IF, Silva TM, Zara LF, Silva NJ Jr, Padilha PM (2017) Metalloproteomics approach to analyze mercury in breast Milk and hair samples of lactating women in communities of the Amazon Basin, Brazil. Biol Trace Elem Res 181:1–11.

    CAS  Article  Google Scholar 

  25. 25.

    de Castro NSS, Lima MDO (2014, 2014) Biomarkers of mercury exposure in the Amazon. Biomed Res Int.

  26. 26.

    Gutiérrez-Mosquera H, Sujitha SB, Jonathan MP et al (2018) Mercury levels in human population from a mining district in Western Colombia. J Environ Sci 68:83–90.

    Article  Google Scholar 

  27. 27.

    Wolf SE, Swaddle JP, Cristol DA, Buchser WJ (2017) Methylmercury exposure reduces the auditory brainstem response of Zebra finches (Taeniopygia guttata ). J Assoc Res Otolaryngol 18:569–579.

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Zhou F, Yin G, Gao Y et al (2019) Toxicity assessment due to prenatal and lactational exposure to lead, cadmium and mercury mixtures. Environ Int 133.

  29. 29.

    de Queiroz JV, Vieira JCS, da Cunha BI et al (2018) Total mercury determination in muscle and liver tissue samples from Brazilian Amazon fish using slurry sampling. Biol Trace Elem Res 184:517–522.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Sénèque O, Rousselot-Pailley P, Pujol A, Boturyn D, Crouzy S, Proux O, Manceau A, Lebrun C, Delangle P (2018) Mercury trithiolate binding (HgS 3 ) to a de novo designed cyclic decapeptide with three preoriented cysteine side chains. Inorg Chem 57:2705–2713.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Fiati Kenston SS, Su H, Li Z, Kong L, Wang Y, Song X, Gu Y, Barber T, Aldinger J, Hua Q, Li Z, Ding M, Zhao J, Lin X (2018) The systemic toxicity of heavy metal mixtures in rats. Toxicol Res (Camb) 7:396–407.

    CAS  Article  Google Scholar 

  32. 32.

    Vieira JCS, Braga CP, de Oliveira G et al (2017) Correction to: mercury exposure: protein biomarkers of mercury exposure in Jaraqui fish from the Amazon region. Biol Trace Elem Res 1.

  33. 33.

    De Queiroz JV, Cavalcante J, Vieira S et al (2018) Identification of biomarkers of mercury contamination in Brachyplatystoma filamentosum of the Madeira River. Using Metalloproteomic Strategies, Brazil

    Google Scholar 

  34. 34.

    Kumeta H, Nakayama H, Ogura K (2017) Solution structure of the major fish allergen parvalbumin Sco j 1 derived from the Pacific mackerel. Sci Rep 7:17160.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Freidl R, Gstöttner A, Baranyi U, et al (2019) Resistance of parvalbumin to gastrointestinal digestion is required for profound and long-lasting prophylactic oral tolerance. Allergy all.13994.

  36. 36.

    Vologzhannikova AA, Khorn PA, Kazakov AS, Ismailov RG, Sokolov AS, Uversky VN, Permyakov EA, Permyakov SE (2017) In search for globally disordered apo-parvalbumins: case of parvalbumin β-1 from coho salmon. Cell Calcium 67:53–64.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Dudev T, Lim C (2014) Competition among metal ions for protein binding sites: determinants of metal ion selectivity in proteins. Chem Rev 114:538–556.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Kumar VD, Lee L, Edwards BFP (1991) Refined crystal structure of ytterbium-substituted carp parvalbumin 4.25 at 1.5 Å, and its comparison with the native and cadmium-substituted structures. FEBS Lett 283:311–316.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Svärd M, Drakenberg T (1986) Cation binding to parvalbumin studied by 113Cd and 23Na NMR. Peak assignment of rabbit (pI 5.5) parvalbumin. Acta Chem Scand B 40:689–693.

    Article  PubMed  Google Scholar 

  40. 40.

    (2018) rps27a - precursor da proteína S27a ribossômica ubiquitina-40S - Ictalurus punctatus (catfish canal) - gene rps27a & proteína

  41. 41.

    Moraes PM, Santos FA, Padilha CCF et al (2012) A preliminary and qualitative Metallomics study of mercury in the muscle of fish from Amazonas, Brazil. Biol Trace Elem Res 150:195–199.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Han M-HJ, Hu Z, Chen CY et al (2014) Dysbindin-associated proteome in the p2 synaptosome fraction of mouse brain. J Proteome Res 13:4567–4580.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Falini G, Fermani S, Tosi G, Arnesano F, Natile G (2008) Structural probing of Zn(II), cd(II) and hg(II) binding to human ubiquitin. Chem Commun:5960–5962.

  44. 44.

    Furuchi T, Hwang GW, Naganuma A (2002) Overexpression of the ubiquitin-conjugating enzyme Cdc34 confers resistance to methylmercury in Saccharomyces cerevisiae. Mol Pharmacol 61:738–741.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Kurita H, Hasegawa T, Seko Y, Nagase H, Tokumoto M, Lee JY, Satoh M (2018) Effect of gestational cadmium exposure on fetal growth, polyubiquitinated protein and monoubiqutin levels in the fetal liver of mice. J Toxicol Sci 43:19–24

    CAS  Article  Google Scholar 

  46. 46.

    Ugone V, Sanna D, Sciortino G, Maréchal JD, Garribba E (2019) Interaction of vanadium(IV) species with ubiquitin: a combined instrumental and computational approach. Inorg Chem 58:8064–8078.

    CAS  Article  PubMed  Google Scholar 

Download references


The authors thank the Brazilian Research Funding Agencies (FAPESP) (processes 2013/21297-1 and 2014/02668-1), the Coordination of Improvement of Higher Level Personnel (Capes), and the National Electric Energy Agency (ANEEL).

Author information



Corresponding author

Correspondence to José Cavalcante Souza Vieira.

Ethics declarations

All the work involved with animal experimentation developed in this paper was approved by the Ethics Committee on the Use of Animals (CEUA) of the Faculty of Veterinary Medicine and Zootechnics (FMVZ) of the São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Botucatu, Brazil under the number of protocol 110/2015.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vieira, J.C.S., de Oliveira, G., Braga, C.P. et al. Parvalbumin and Ubiquitin as Potential Biomarkers of Mercury Contamination of Amazonian Brazilian Fish. Biol Trace Elem Res 197, 667–675 (2020).

Download citation


  • Mercury in the Amazon
  • Biomarkers
  • Fish
  • Mercury-bound proteins
  • Metalloproteins
  • Proteomics