Skip to main content

Advertisement

Log in

Fluoride Compromises Testicular Redox Sensor, Gap Junction Protein, and Metabolic Status: Amelioration by Melatonin

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The excess fluoride intake has been shown to adversely affect male reproductive health. The aim of the present study was to investigate the key mechanism underlying fluoride-induced testicular dysfunction and the role of melatonin as a modulator of testicular metabolic, oxidative, and inflammatory load. The present results indicated that sodium fluoride (NaF) exposure to adult male golden hamsters severely impairs reproductive physiology as evident from markedly reduced sperm count/viability, testosterone level, androgen receptor (AR), testicular glucose transporter (GLUT-1), gap junction (connexin-43), and survival (Bcl-2) protein expression. NaF exposure markedly increased testicular oxidative load, inflammatory (NF-kB/COX-2), and apoptotic (caspase-3) protein expression. However, melatonin treatment remarkably restored testicular function as evident by normal histoarchitecture, increased sperm count/viability, enhanced antioxidant enzyme activities (SOD and Catalase), and decreased lipid peroxidation (LPO) level. In addition, melatonin treatment upregulated testicular Nrf-2/HO-I, SIRT-1/ FOXO-1, and downregulated NF-kB/COX-2 expression. Further, melatonin ameliorated NaF-induced testicular metabolic stress by modulating testicular GLUT-1expression, glucose level, and LDH activity. Furthermore, melatonin treatment enhanced testicular PCNA, Bcl-2, connexin-43, and reduced caspase-3 expression. In conclusion, we propose the molecular mechanism of fluoride-induced testicular damages and ameliorative action(s) of melatonin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ali S, Thakur SK, Sarkar A, Shekhar S (2016) Worldwide contamination of water by fluoride. Environ Chem Lett 14:291–315. https://doi.org/10.1007/s10311-016-0563-5

    Article  CAS  Google Scholar 

  2. Mukherjee I, Singh UK (2018) Groundwater fluoride contamination, probable release, and containment mechanisms: a review on Indian context. Environ Geochem Health 40:2259–2301

    Article  CAS  Google Scholar 

  3. Aitken, Roman (2008) Antioxidant systems and oxidative stress in the testes. Oxidative Med Cell Longev 1:15–24

    Article  Google Scholar 

  4. Sun Z, Li S, Guo Z, Li R, Wang J, Niu R, Wang J (2018) Effects of Fluoride on SOD and CAT in testes and epididymes of mice. Biol Trace Elem Res 184(1):148–153. https://doi.org/10.1007/s12011-017-1181-1

    Article  CAS  PubMed  Google Scholar 

  5. Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J (2016) Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci 73(17):3221–3247. https://doi.org/10.1007/s00018-016-2223-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liang M, Wang Z, Li H, Cai L, Pan J, He H et al (2018) l-Arginine induces antioxidant response to prevent oxidative stress via stimulation of glutathione synthesis and activation of Nrf2 pathway. Food Chem Toxicol 115:315–328. https://doi.org/10.1016/j.fct.2018.03.029

    Article  CAS  PubMed  Google Scholar 

  7. Franco R, Navarro G, Martinez-Pinilla E (2019) Antioxidant defense mechanisms in erythrocytes and in the central nervous system. J Antioxid 8(2):E46. https://doi.org/10.3390/antiox8020046

    Article  CAS  Google Scholar 

  8. Luo Q, Cui H, Deng H, Kuang P, Liu H, Lu Y et al (2017) Sodium fluoride induces renal inflammatory responses by activating NF-kappaB signaling pathway and reducing anti-inflammatory cytokine expression in mice. J Oncotarget 8(46):80192–80207. https://doi.org/10.18632/oncotarget.19006

    Article  Google Scholar 

  9. Ameeramja J, Perumal E (2018) Possible modulatory effect of tamarind seed coat extract on fluoride-induced pulmonary inflammation and fibrosis in rats. J Inflamm 41(3):886–895

    Article  CAS  Google Scholar 

  10. Chen L, Kuang P, Liu H, Wei Q, Cui H, Fang J et al (2019) Sodium fluoride (NaF) induces inflammatory responses via activating MAPKs/NF-kappaB signaling pathway and reducing anti-inflammatory cytokine expression in the mouse liver. Biol Trace Elem Res 189(1):157–171. https://doi.org/10.1007/s12011-018-1458-z

    Article  CAS  PubMed  Google Scholar 

  11. Han J, Pan XY, Xu Y, Xiao Y, An Y, Tie L et al (2012) Curcumin induces autophagy to protect vascular endothelial cell survival from oxidative stress damage. Autophagy 8(5):812–825. https://doi.org/10.4161/auto.19471

    Article  CAS  PubMed  Google Scholar 

  12. Tatone C, Emidio D, Barbonetti G, Carta A, Luciano G, Falone AM, Amicarelli F (2018) Sirtuins in gamete biology and reproductive physiology: emerging roles and therapeutic potential in female and male infertility. Hum Reprod Update 24(3):267–289. https://doi.org/10.1093/humupd/dmy003

    Article  CAS  PubMed  Google Scholar 

  13. Qiang L, Sample A, Liu H, Wu X, He YY (2017) Epidermal SIRT1 regulates inflammation, cell migration, and wound healing. Sci Rep 7(1):14110. https://doi.org/10.1038/s41598-017-14,371-3

    Article  PubMed  PubMed Central  Google Scholar 

  14. Shah SA, Khan M, Jo MH, Jo MG, Amin FU, Kim MO (2017) Melatonin Stimulates the SIRT-1/Nrf2 signaling pathway counteracing lipopolysaccharide (LPS)- induced oxidative stress to rescue postnatal rat brain. CNS Neurosci Ther 23(1):33–44. https://doi.org/10.1111/cns.12588

    Article  CAS  PubMed  Google Scholar 

  15. Rato L, Alves MG, Socorro S, Duarte AI, Cavaco JE, Oliveira PF (2012) Metabolic regulation is important for spermatogenesis. Nat Rev Urol 9:330–33,877

    Article  CAS  Google Scholar 

  16. Oliveira PF, Martins AD, Moreira AC, Cheng CY, Alves MG (2015) The Warburg effect revisited—lesson from the Sertoli cell. Med Res Rev 35:126–151

    Article  Google Scholar 

  17. Kopera IA, Bilinska B, Cheng CY, Mruk DD (2010) Sertoli-germ cell junctions in the testis: a review of recent data. Philos Trans R Soc Lond Ser B Biol Sci 365(1546):1593–1605. https://doi.org/10.1098/rstb.2009.0251

    Article  CAS  Google Scholar 

  18. Kidder GM, Cyr DG (2016) Roles of connexins in testis development and spermatogenesis. Semin Cell Dev Biol 50:22–30. https://doi.org/10.1016/j.semcdb.2015.12.019

    Article  CAS  PubMed  Google Scholar 

  19. Kristina R, Karola W, Damm OS, Wistuba J, Langeheine M, Brehm R (2018) Loss of connexin 43 in Sertoli cells provokes postnatal spermatogonial arrest, reduced germ cell numbers and impaired spermatogenesis. Reprod Biol 18(4):456–466

    Article  Google Scholar 

  20. Pointis G, Gillerona J, Caretteab D, Segretainb D (2015) Testicular connexin 43, a precocious molecular target for the effect of environmental toxicants on male fertility. Spermatogenesis 4:303–317

    Google Scholar 

  21. Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L (2016) Melatonin as an antioxidants: under promiises but over delivers. J Pineal Res 61(3):253–278. https://doi.org/10.1111/jpi.12360

    Article  CAS  PubMed  Google Scholar 

  22. Galano A, Tan DX, Reiter RJ (2018) Melatonin: a versatile protector against oxidative DNA damage. Molecules 23(3):E530. https://doi.org/10.3390/molecules23030530

    Article  CAS  PubMed  Google Scholar 

  23. Zhao L, Liu H, Yue L, Zhang J, Li X, Wang B et al (2017) Melatonin attenuates early brain injury via the melatonin receptor/Sirt1/NF-kappaB signaling pathway following subarachnoid hemorrhage in mice. Mol Neurobiol 54(3):1612–1621. https://doi.org/10.1007/s12035-016-9776-7

    Article  CAS  PubMed  Google Scholar 

  24. Bai XZ, He T, Gao JX, Liu Y, Liu JQ, Han SC, Hu DH (2016) Melatonin prevents acute kidney injury in severely burned rats via the activation of SIRT1. Sci Rep 6:32199. https://doi.org/10.1038/srep32199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rastogi S, Haldar C (2018) Comparative effect of melatonin and quercetin in counteracting LPS induced oxidative stress in bone marrow mononuclear cells and spleen of Funambulus pennanti. Food Chem Toxicol 120:243–252. https://doi.org/10.1016/j.fct.2018.06.062

    Article  CAS  PubMed  Google Scholar 

  26. Lu Y, Luo Q, Cui H, Deng H, Kuang P, Liu H et al (2017) Sodium fluoride causes oxidative stress and apoptosis in the mouse liver. J Aging 9(6):1623–1639. https://doi.org/10.18632/aging.101257

    Article  CAS  Google Scholar 

  27. Guo Y, Sun J, Li T, Zhang Q, Bu S, Wang Q, Lai D (2017) Melatonin ameliorates restraint stress- induced oxidative stress and apoptosis in testicular cells via NF-kappaB/iNOS and Nrf2/ HO-1 signaling pathway. Sci Rep 7(1):9599

    Article  Google Scholar 

  28. Mukherjee A, Haldar C, Vishwas DK (2014) Melatonin prevents dexamethasone-induced testicular oxidative stress and germ cell apoptosis in golden hamster, Mesocricetus auratus. Int J Androl xx:1–12

    Google Scholar 

  29. Singh S, Singh SK (2018) Chronic exposure to perfluorononanoic acid impairs spermatogenesis, steroidogenesis and fertility in male mice. J Appl Toxicol 39(3):420–431

    Article  Google Scholar 

  30. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  31. Das K, Samanta L, Chainy NBG (1999) A modified spectrophotometric assay of su-peroxide dismutase using nitrite formation by superoxide radicals. Ind J Biochem Biophys 37:201–204

    Google Scholar 

  32. Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47:389–394

    Article  CAS  Google Scholar 

  33. Ohkawa H, Ohishi N, Yagi K (1978) Reaction of linoleic acid hydroperoxide with thiobarbuteric acid. J Lipid Res 19:1053–1057

    CAS  PubMed  Google Scholar 

  34. Tanishima K, Gao SX, Yamamoto R, Yoshida H (1995) Biochemical and enzymological study of lactate dehydrogenase isoenzymes from commercial quality control sera and several animal tissue sources. Eur J Clin Chem Clin 33:865–868

    CAS  Google Scholar 

  35. Verma R, Haldar C (2016) Photoperiodic modulation of thyroid hormone receptor (TR-α), deiodinase-2 (Dio-2) and glucose transporters (GLUT 1 and GLUT 4) expression in testis of adult golden hamster, Mesocricetus auratus. J Photochem Photobiol 165:351–358

    Article  CAS  Google Scholar 

  36. Singh S, Singh SK (2019) Prepubertal exposure to perfluorononanoic acid interferes with spermatogenesis and steroidogenesis in male mice. Ecotoxicol Environ Saf 170:590–599. https://doi.org/10.1016/j.ecoenv.2018.12.034

    Article  CAS  PubMed  Google Scholar 

  37. Zhang S, Niu Q, Gao H, Ma R, Lei R, Zhang C, Xia T, Li P, Xu C, Wang C, Chen J, Dong L, Zhao Q, Wang A (2016) Excessive apoptosis and defective autophagy contribute to developmental testicular toxicity induced by fluoride. Environ Pollut 212:97–104

    Article  CAS  Google Scholar 

  38. Mima M, Greenwald D, Ohlander S (2018) Environmental toxins and male fertility. Curr J Urol Rep 19(7):50

    Article  Google Scholar 

  39. Zhang S, Jiang C, Liu H, Guan Z, Zeng Q, Zhang C et al (2013) Fluoride-elicited developmental testicular toxicity in rats: roles of endoplasmic reticulum stress and inflammatory response. Toxicol Appl Pharmacol 271(2):206–215. https://doi.org/10.1016/j.taap.2013.04.033

    Article  CAS  PubMed  Google Scholar 

  40. Smith LB, Walker WH (2014) The regulation of spermatogenesis by androgens. Semin Cell Dev Biol 30:2–13

    Article  CAS  Google Scholar 

  41. Asadi N, Bahmani M, Kheradmand A, Rafieian-Kopaei M (2017) The impact of oxidative stress on testicular function and the role of antioxidants in improving it: a review. J Clin Diagn Res 11(5):IE01–IE05

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Cardoso JP, Cocuzza M, Elterman D (2019) Optimizing male fertility: oxidative stress and the use of antioxidants. World J Urol 37(6):1029–1034

    Article  Google Scholar 

  43. Jenwitheesuk A, Boontem P, Wongchitrat P, Tocharus J, Mukda S, Govitrapong P (2017) Melatoninregulatestheaging mouse hippocampal homeostasis via the sirtuin1-FOXO1 pathway. J Exp Clin Sci 16:340–353. https://doi.org/10.17179/excli2016-852

    Article  Google Scholar 

  44. Rocha CS, Martins AD, Rato L, Silva BM, Oliveira PF, Alves MG (2014) Melatonin alters the glycolytic profile of Sertoli cells: implications for male fertility. Mol Hum Reprod 20(11):1067–1076

    Article  CAS  Google Scholar 

  45. Chen J, Cao L, Li Z, Li Y (2019) SIRT1 promotes GLUT1 expression and bladder cancer progression via regulation of glucose uptake. Hum Cell 32(2):193–201. https://doi.org/10.1007/s13577-019-00237-5

    Article  CAS  PubMed  Google Scholar 

  46. Richburg JH (2000) The relevance of spontaneous and chemically induced alterations in testicular germ cell apoptosis to toxicology. Toxicol Lett 112–113:79–86

    Article  Google Scholar 

  47. Molpeceres V, Mauriz JL, Garcia-Mediavilla MV, Gonzalez P, Barrio JP, Gonzalez-Gallego J (2007) Melatonin is able to reduce the apoptotic liver changes induced by aging via inhibition of the intrinsic pathway of apoptosis. J Gerontol A Biol Sci Med Sci 62(7):687–695. https://doi.org/10.1093/gerona/62.7.687

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the Council of Scientific and Industrial Research (CSIR), New Delhi, Government of India for providing financial support as Junior Research Fellowship (JRF) to Mr. Jitendra Kumar (grant scheme number: 09/013/(0709)/2017-EMR-I) and the University Grants Commission, New Delhi, India through CAS in Department of Zoology, Banaras Hindu University. The instrument subsidiary award from the Alexander von Humboldt Foundation, Bonn, Germany to Prof. Chandana Haldar is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Verma.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, J., Haldar, C. & Verma, R. Fluoride Compromises Testicular Redox Sensor, Gap Junction Protein, and Metabolic Status: Amelioration by Melatonin. Biol Trace Elem Res 196, 552–564 (2020). https://doi.org/10.1007/s12011-019-01946-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01946-6

Keywords

Navigation