Could biological tissue preservation methods change chemical elements proportion measured by energy dispersive X-ray spectroscopy?

Abstract

Energy dispersive X-ray spectroscopy (EDS) is a powerful technical tool used in the biomedical field to investigate the proportion of chemical elements of interest in research, such as heavy metal bioaccumulation and the enzymatic cofactors and nanoparticle therapy in various pathologies. However, the correct evaluation of the proportion of the elements is subject to some factors, including the method of sample preservation. In this study, we seek to investigate the effect of biological tissue preservation methods on the proportion of chemical elements obtained by the EDS methodology. For such, we used EDS to measure the proportion of chemical elements with biomedical interest in preserved livers, using three common methods for preserving biological tissues: (a) freezing, (b) paraformaldehyde fixative solution, and (c) Karnovsky solution. We found an increased level of sodium and reduced contents of potassium and copper in samples fixed in fixative solutions, when compared to frozen samples (p < 0.05). Our data indicate that preservation methods can change the proportion of chemical elements in biological samples, when measured by EDS. Frozen preservation should be preferred to retain the actual chemical content of samples and allow a correct assessment of the proportion of their elements.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    Fernandez-Segura E, Warley A (2008) Chapter 2 electron probe X-ray microanalysis for the study of cell physiology. In: Methods in Cell Biology. pp 19–43

  2. 2.

    Samuelson DA (1998) Energy dispersive X-ray microanalysis. In: Free radical and antioxidant protocols. Humana Press, New Jersey, pp 413–424

    Google Scholar 

  3. 3.

    Scimeca M, Bischetti S, Lamsira HK, et al (2018) Energy dispersive X-ray (EDX) microanalysis: a powerful tool in biomedical research and diagnosis. Eur J Histochem 62:. https://doi.org/10.4081/ejh.2018.2841

  4. 4.

    Kumar V, Gill KD (2014) Oxidative stress and mitochondrial dysfunction in aluminium neurotoxicity and its amelioration: a review. Neurotoxicology 41:154–166. https://doi.org/10.1016/j.neuro.2014.02.004

    CAS  Article  Google Scholar 

  5. 5.

    Novaes RD, Mouro VGS, Gonçalves RV et al (2018) Aluminum: a potentially toxic metal with dose-dependent effects on cardiac bioaccumulation, mineral distribution, DNA oxidation and microstructural remodeling. Environ Pollut 242:814–826. https://doi.org/10.1016/j.envpol.2018.07.034

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Adachi K, Yamada N, Yamamoto K et al (2010) In vivo effect of industrial titanium dioxide nanoparticles experimentally exposed to hairless rat skin. Nanotoxicology 4:296–306. https://doi.org/10.3109/17435391003793095

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Scimeca M, Orlandi A, Terrenato I et al (2014) Assessment of metal contaminants in non-small cell lung cancer by EDX microanalysis. Eur J Histochem 58:233–238. https://doi.org/10.4081/ejh.2014.2403

    CAS  Article  Google Scholar 

  8. 8.

    Cupertino M d C, Novaes RD, Santos EC et al (2017) Cadmium-induced testicular damage is associated with mineral imbalance, increased antioxidant enzymes activity and protein oxidation in rats. Life Sci 175:23–30. https://doi.org/10.1016/j.lfs.2017.03.007

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Sertorio MN, Souza ACF, Bastos DSS et al (2019) Arsenic exposure intensifies glycogen nephrosis in diabetic rats. Environ Sci Pollut Res 26:12459–12469. https://doi.org/10.1007/s11356-019-04597-1

    CAS  Article  Google Scholar 

  10. 10.

    Souza ACF, Marchesi SC, de Almeida Lima GD, Machado-Neves M (2018) Effects of arsenic compounds on microminerals content and antioxidant enzyme activities in rat liver. Biol Trace Elem Res 183:305–313. https://doi.org/10.1007/s12011-017-1147-3

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Shepherd TM, Thelwall PE, Stanisz GJ, Blackband SJ (2009) Aldehyde fixative solutions alter the water relaxation and diffusion properties of nervous tissue. Magn Reson Med 62:26–34. https://doi.org/10.1002/mrm.21977

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Purea A, Webb AG (2006) Reversible and irreversible effects of chemical fixation on the NMR properties of single cells. Magn Reson Med 56:927–931. https://doi.org/10.1002/mrm.21018

    Article  PubMed  Google Scholar 

  13. 13.

    Mouro VGS, Siman VA, da Silva J et al (2019) Cadmium-induced testicular toxicity in mice: subacute and subchronic route-dependent effects. Biol Trace Elem Res. https://doi.org/10.1007/s12011-019-01731-5

  14. 14.

    Sehy JV, Ackerman JJH, Neil JJ (2002) Apparent diffusion of water, ions, and small molecules in the Xenopus oocyte is consistent with Brownian displacement. Magn Reson Med 48:42–51. https://doi.org/10.1002/mrm.10181

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Öhrvik H, Thiele DJ (2014) How copper traverses cellular membranes through the mammalian copper transporter 1, Ctr1. Ann N Y Acad Sci 1314:32–41. https://doi.org/10.1111/nyas.12371

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    De Feo CJ, Aller SG, Unger VM (2007) A structural perspective on copper uptake in eukaryotes. BioMetals 20:705–716. https://doi.org/10.1007/s10534-006-9054-7

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Tao T (2003) Hepatic copper metabolism: Insights from genetic disease. Hepatology 37:1241–1247. https://doi.org/10.1053/jhep.2003.50281

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Ramos D, Mar D, Ishida M et al (2016) Mechanism of copper uptake from blood plasma ceruloplasmin by mammalian cells. PLoS One 11:1–23. https://doi.org/10.1371/journal.pone.0149516

    CAS  Article  Google Scholar 

  19. 19.

    Masuoka J, Saltman P (1994) Zinc(II) and copper(II) binding to serum albumin. A comparative study of dog, bovine, and human albumin. J Biol Chem 269:25557–25561

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the “Núcleo de Microscopia e Microanálise - NMM” of the Federal University of Viçosa (UFV); Almeida, E. L. M. for the insights in the discussion; Sacramento, E. for English language editing; “Programa de Pós-Graduação em Biologia Celular e Estrutural” of UFV for the resources to perform the analyses; and “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior” (CAPES) for the L. C. M. Ladeira Ph.D. scholarship provided (process nº 88882.436984/2019-01).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Luiz Carlos Maia Ladeira.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ladeira, L.C.M., dos Santos, E.C., Valente, G.E. et al. Could biological tissue preservation methods change chemical elements proportion measured by energy dispersive X-ray spectroscopy?. Biol Trace Elem Res 196, 168–172 (2020). https://doi.org/10.1007/s12011-019-01909-x

Download citation

Keywords

  • Energy dispersive X-ray spectroscopy
  • Fixative methods
  • Chemical element proportion