Proximal Composition of Undaria pinnatifida from San Jorge Gulf (Patagonia, Argentina)

Abstract

Undaria pinnatifida is a brown macroalga considered a high quality natural food because of its numerous health benefits. The aim of this paper is to provide seasonal information on the chemical content of blades and sporophylls of U. pinnatifida from San Jorge Gulf (SJG, Chubut, Argentina) in order to evaluate their different uses. Moreover, samples of algae deposited on the beach are also studied. A multi-elemental analysis is made by Total Reflection X-ray Fluorescence (TXRF). Sixteen elements are quantified: As, Br, Ca, Cr, Cu, Fe, K, Mn, Ni, P, Pb, Rb, S, Sr, V and Zn. The results reveal that the mineral content in blades of U. pinnatifida is high, especially in autumn. Some elements show an important seasonal variation, such as: K (14-54.8 g kg−1), P (2.7-7.0 g kg−1), Sr (361–569 mg kg−1), Fe (62–140 mg kg−1), Zn (8–103 mg kg−1), Br (45–94 mg kg−1) and Rb (4–24 mg kg−1). In the case of potentially toxic elements, a variation was seen mainly in arsenic, with higher values during summer and autumn. The concentrations of nickel and lead are below the limit of detection (0.9 mg kg−1). Sporophylls contain high concentrations of macro and micronutrients, with maximum values in spring. Besides, reproductive structures showed higher total arsenic values than blades. This could indicate that arsenic is mainly accumulated in sporophylls. Algae deposited on the beach are considered a waste; but they show a similar elemental composition to the samples extracted from the sea. We concluded that all samples analyzed could be used as food or fertilizers by local populations.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. 1.

    Cobalt levels in the samples were below its corresponding limit of detection and for that reason it was possible use it as internal standard.

References

  1. 1.

    Taboada MC, Millán R, Miguez MI (2013) Nutritional value of the marine algae wakame (Undaria pinnatifida) and nori (Porphyra purpurea) as food supplements. J Appl Phycol 25:1271–1276. https://doi.org/10.1007/s10811-012-9951-9

    CAS  Article  Google Scholar 

  2. 2.

    Rebours C, Marinho-Soriano E, Zertuche-González JA, Hayashi L, Vásquez JA, Kradolfer P, Soriano G, Abreu MH, Bay-Larsen I, Hovelsrud G, Radven R, Robledo D (2014) Seaweeds: an opportunity for wealth and sustainable livelihood for coastal communities. J Appl Phycol 26:1939–1951. https://doi.org/10.1007/s10811-014-0304-8

    CAS  Article  PubMed Central  Google Scholar 

  3. 3.

    Fung A, Hamid N, Lu J (2013) Fucoxanthin content and antioxidant properties of Undaria pinnatifida. Food Chem 136:1055–1062. https://doi.org/10.1016/j.foodchem.2012.09.024

    CAS  Article  Google Scholar 

  4. 4.

    Rafiquzzaman SM, Kim EY, Lee JM, Mohibbullah M, Alam MB, Moon S, Kim JM, Kong IS (2015) Anti-Alzheimers and anti-inflammatory activities of glycoprotein purified from edible brown alga Undaria pinnatifida. Food Res Int 77:118–124. https://doi.org/10.1016/j.foodres.2015.08.021

    CAS  Article  Google Scholar 

  5. 5.

    Piriz ML, Eyras MC, Rostagno CM (2003) Changes in biomass and botanical composition of beach cast seaweed in a disturbed coastal area from Argentine Patagonia. J Appl Phycol 15:67–74. https://doi.org/10.1023/A:1022959005072

    Article  Google Scholar 

  6. 6.

    Tang J, Wang M, Zhou Q, Nagata S (2011) Improved composting of Undaria pinnatifida seaweed by inoculation with Halomonas and Gracilibacillus sp. Isolated from marine environments. Bioresour Technol 102:2925–2930. https://doi.org/10.1016/j.biortech.2010.11.064

    CAS  Article  Google Scholar 

  7. 7.

    Chakraborty S, Bhattacharya T, Singh G, Maity JP (2014) Benthic macroalgae as biological indicators of heavy metal pollution in the marine environments: A biomonitoring approach for pollution assessment. Ecotoxicol Environ Saf 100:61–68. https://doi.org/10.1016/j.ecoenv.2013.12.003

    CAS  Article  Google Scholar 

  8. 8.

    Plaza Cazón J, Viera M, Donati E, Guibal E (2013) Zinc and cadmium removal by biosorption on Undaria pinnatifida in batch and continuous processes. J Environ Manag 129:423–434. https://doi.org/10.1016/j.jenvman.2013.07.011

    CAS  Article  Google Scholar 

  9. 9.

    Chen H, Zhou D, Luo G, Zhang S, Chen J (2015) Macroalgae for biofuels production: progress and perspectives. Renew Sust Energ Rev 47:427–437. https://doi.org/10.1016/j.rser.2015.03.086

    CAS  Article  Google Scholar 

  10. 10.

    Skrzypczyk VM, Hermon KM, Norambuena F, Turchini GM, Keast R, Bellgrove A (2019) Is Australian seaweed worth eating? Nutritional and sensorial properties of wild-harvested Australian versus commercially available seaweeds. J Appl Phycol 31(1):709–724 http://hdl.handle.net/10536/DRO/DU:30110338

    CAS  Article  Google Scholar 

  11. 11.

    Singh NK, Raghubanshi AS, Upadhyay AK, Rai UN (2016) Arsenic and other heavy metals accumulation in plants and algae growing naturally in contaminated area of West Bengal, India. Ecotoxicol Environ Saf 130:224–233. https://doi.org/10.1016/j.ecoenv.2016.04.024

    CAS  Article  Google Scholar 

  12. 12.

    Rubio C, Napoleone G, Luis-González G, Gutiérrez AJ, González-Weller D, Hardisson A, Revert C (2017) Metals in edible seaweed. Chemosphere. 17:572–579. https://doi.org/10.1016/j.chemosphere.2017.01.064

    CAS  Article  Google Scholar 

  13. 13.

    Balboa EM, Gallego-Fábrega C, Moure A, Dominguez H (2015) Study of the seasonal variation on proximate composition of oven-dried Sargassum muticum biomass collected in Vigo Ria, Spain. J Appl Phycol 28(3):1943–1953 http://rd.springer.com/journal/10811

    Article  Google Scholar 

  14. 14.

    Lee HS, Cho YH, Park SO, Kye SH, Kim BH, Hahm TS, Kim M, Kim C (2006) Dietary exposure of the Korean population to arsenic, cadmium, lead and mercury. J Food Compos Anal 19:831–837. https://doi.org/10.1016/j.jfca.2005.10.006

    CAS  Article  Google Scholar 

  15. 15.

    Miedico O, Pompa C, Tancredu C, Cera A, Pellegrino E, Tarallo M, Chiaravalle AE (2017) Characterisation and chemometric evaluation of 21 trace elements in three edible seaweed species imported from south–east Asia. J Food Compos Anal 64(2):188–197. https://doi.org/10.1016/j.jfca.2017.09.004

    CAS  Article  Google Scholar 

  16. 16.

    James K (2017) A review of the impacts from invasion by the introduced kelp Undaria pinnatifida. Waikato Regional Council Technical Report 2016/40:32 p. http://hdl.handle.net/2292/33578

  17. 17.

    Casas G, Piriz ML (1996) Survey of Undaria pinnatifida (Laminariales, Phaeophyta) in Golfo Nuevo, Argentina. Hydrobiologia. 326/327:213–215. https://doi.org/10.1007/BF00047809

    Article  Google Scholar 

  18. 18.

    Martin JP, Cuevas JM (2006) First record of Undaria pinnatifida (Laminariales, Phaeophyta) in Southern Patagonia, Argentina. BiolInv. 8:1399–1402. https://doi.org/10.1007/s10530-006-0004-7

    Article  Google Scholar 

  19. 19.

    Dellatorre FG, Amoroso R, Saravia J, Orensanz JM (2014) Rapid expansion and potential range of the invasive kelp Undaria pinnatifida in the Southwest Atlantic. Aquat Invasions 9(4):467–478. https://doi.org/10.3391/ai.2014.9.4.05

    Article  Google Scholar 

  20. 20.

    Meretta PE, Matula CV, Casas G (2012) Occurrence of the alien kelp Undaria pinnatifida (Laminariales, Phaeophyceae) in Mar del Plata, Argentina. BioInvasions Records 1(1):59–63. https://doi.org/10.3391/bir.2012.1.1.13

    Article  Google Scholar 

  21. 21.

    Eyras MC, Deffosé GE, Dellatorre BF (2008) Seaweed compost as an amendment for horticultural soils in Patagonia, Argentina. Compost Sci Util 16(2):119–124. https://doi.org/10.1080/1065657X.2008.10702366

    Article  Google Scholar 

  22. 22.

    Borgese L, Bilo F, Dalipi R, Bontempi E, Depero LE (2015) Total reflection X-ray fluorescence as a tool for food screening. Spectrochim Acta B 113:1–15. https://doi.org/10.1016/j.sab.2015.08.001

    CAS  Article  Google Scholar 

  23. 23.

    Salomone VN, Riera M, Cherchietti L, Custo G, Muniain C (2017a) Seasonal determination of trace and ultra-trace content in Macrocystis pyrifera from San Jorge Gulf (Patagonia) by Total Reflection X-ray Fluorescence. Spectrochim Acta B 131:74–78. https://doi.org/10.1016/j.sab.2017.03.009

    CAS  Article  Google Scholar 

  24. 24.

    ISO 18507:2015 Surface chemical analysis–use of total reflection X-ray fluorescence spectroscopy in biological and environmental analysis. https://www.sis.se/api/document/preview/919159/

  25. 25.

    Riget F, Johansen P, Asmund G (1995) Natural seasonal variation of cadmium, copper, lead and zinc in brown seaweed (Fucus vesiculosus). Mar Pollut Bull 30(6):409–413. https://doi.org/10.1016/0025-326X(95)99847-W

    CAS  Article  Google Scholar 

  26. 26.

    Ometto F, Steinhovden KB, Kici H, Lumback J, Berg A, Karlsson A, Handá A, Wollan H, Ejlertsson J (2018) Seasonal variation of elements composition and biomethane in brown macroalgae. Biomass Bioenergy 109:31–38. https://doi.org/10.1016/j.biombioe.2017.11.006

    CAS  Article  Google Scholar 

  27. 27.

    Giordano M, Raven JA (2014) Nitrogen and sulfur assimilation in plants and algae. Aquat Bot 118:45–61 https://hdl.handle.net/10.1016/j.aquabot.2014.06.012

    CAS  Article  Google Scholar 

  28. 28.

    Nielsen SP (2004) The biological role of strontium. Bone. 35:583–588. https://doi.org/10.1016/j.bone.2004.04.026

    CAS  Article  Google Scholar 

  29. 29.

    Flores SRL, Dobbs J, Dunn MA (2015) Mineral nutrient content and iron bioavailability in common and Hawaiian seaweeds assessed by an in vitro digestion/Caco-2 cell model. J Food Compos Anal 43:185–193. https://doi.org/10.1016/j.jfca.2015.06.008

    CAS  Article  Google Scholar 

  30. 30.

    Küpper FC, Miller EP, Andrews SJ, Hughes C, Carpenter LJ, Meyer-Klaucke W, Toyanna C, Muramatsu Y, Feiters MC, Carrano CJ (2018) Emission of volatile halodenated compounds, speciation and localization of bromine and iodine in the brown algal genome model Ectocarpus siliculosus. J Biol Inorg Chem. https://doi.org/10.1007/s00775-018-1539-7

  31. 31.

    Flodin C, Helidoniotis F, Whitfield FB (1999) Seasonal variation in bromophenol content and bromoperoxidase activity in Ulva lactuca. Phytochemistry. 51:135–138. https://doi.org/10.1016/S0031-9422(98)00668-2

    CAS  Article  Google Scholar 

  32. 32.

    De Boer E, van Kooyk Y, Tromp MGM, Plat H, Wever R (1986) Bromoperoxidase from Ascophyllum nodosum: a novel class of enzymes containing vanadium as a prosthetic group? Biochim Biophys Acta 869:48–53. https://doi.org/10.1016/0167-4838(86)90308-0

    Article  Google Scholar 

  33. 33.

    Bishayee A, Waghray A, Patel MA, Chatterjee M (2010) Vanadium in the detection, prevention and treatment of cancer: the in vitro evidence. Cancer Lett 294:1–12 https://www.ncbi.nlm.nih.gov/pubmed/20206439

    CAS  Article  Google Scholar 

  34. 34.

    Rehder D (2015) The role of vanadium in biology. Metallomics. 7:730–742. https://doi.org/10.1039/C4MT00304G

    CAS  Article  Google Scholar 

  35. 35.

    Taylor VF, Goodale B, Raab A, Schwerdtle T, Reamer K, Conklin S, Karagas MR, Francesconi KA (2017) Human exposure to organic arsenic species from seafood. Sci Total Environ 580:266–282. https://doi.org/10.1016/j.scitotenv.2016.12.113

    CAS  Article  Google Scholar 

  36. 36.

    Caliceti M, Argese E, Sfriso A, Pavoni B (2002) Heavy metal contamination in the seaweeds of the Venice lagoon. Chemosphere 47:443–454. https://doi.org/10.1016/S0045-6535(01)00292-2

    CAS  Article  Google Scholar 

  37. 37.

    Rupérez P (2002) Mineral content of edible marine seaweed. Food Chem 79:23–26. https://doi.org/10.1016/S0308-8146(02)00171-1

    Article  Google Scholar 

  38. 38.

    Kolb N, Vallorani L, Milanovic N, Stocchi V (2004) Evaluation of marine algae wakame (Undaria pinnatífida) and kombu (Laminaria digitata japonica) as food supplements. Food Technol Biotechnol 42(1):57–61

    CAS  Google Scholar 

  39. 39.

    Dawczynski C, Schafer U, Leiterer M, Jahreis G (2007) Nutritional and toxicological importance of macro, trace and ultra-trace elements in algae food products. J Agric Food Chem 55:10470–10475. https://doi.org/10.1021/jf0721500

    CAS  Article  Google Scholar 

  40. 40.

    Cofrades S, Lopez-Lopez I, Bravo I, Ruiz-Capillas C, Bastida S, Larrea MT, Jimenez Colmenero F (2010) Nutritional and antioxidant properties of different brown and red Spanish edible seaweeds. Food Sci Technol Int 16(5):361–370. https://doi.org/10.1177/1082013210367049

    CAS  Article  Google Scholar 

  41. 41.

    Park K-J, Kim BY, Park SK, Lee J-H, Kim YS, Choi HG, Nam KW (2012) Morphological and biochemical differences in three Undaria pinnatifida populations in Korea. Algae. 27(3):189–196. https://doi.org/10.4490/algae.2012.27.3.189

    CAS  Article  Google Scholar 

  42. 42.

    Marzocchi M, Badocco D, Piovan A, Pastore P, Di Marco V, Filippini R, Caniato R (2016) Metals in Undaria pinnatifida (Harvey) Suringar and Sargassum muticum (Yendo) Fensholt edible seaweeds growing around Venice (Italy). J Appl Phycol 28:2605–2613. https://doi.org/10.1007/s10811-016-0793-8

    CAS  Article  Google Scholar 

  43. 43.

    Sato Y, Tamaki J, Kitayama F, Kusaka Y, Kodera Y, Koutani A, Iki M (2005) Development of a food-frequency questionnaire to measure the dietary calcium intake of adult japanese women. Tohoku J Exp Med 207:217–222. https://doi.org/10.1620/tjem.207.217

    CAS  Article  Google Scholar 

  44. 44.

    Almela C, Algora S, Benito V, Clemente MJ, Devesa V, Súñer MA, Vélez D, Montoro R (2002) Heavy metal, total arsenic, and inorganic arsenic contents of algae food products. J Agric Food Chem 50:918–923. https://doi.org/10.1021/jf0110250

    CAS  Article  Google Scholar 

  45. 45.

    Almela C, Clemente MJ, Vélez D, Montoro R (2006) Total arsenic, inorganic arsenic, lead and cadmiun contents edible seaweed sold in Spain. Food Chem Toxicol 44:1901–1908. https://doi.org/10.1016/j.fct.2006.06.011

    CAS  Article  Google Scholar 

  46. 46.

    Gil MN, Torres AI, Commendatore MG, Marinho C, Atias A, Giarratano E, Casas GN (2014) Nutritive and Xenobiotic Compounds in the Alien Algae Undaria pinnatifida from Argentine Patagonia. Arch Environ Contam Toxicol 68(3):553–565. https://doi.org/10.1007/s00244-014-0090-y

    CAS  Article  Google Scholar 

  47. 47.

    Hau L, Robertson J, White WL (2014) Metals in New Zealand Undaria pinnatifida (Wakame). Open J Mar Sci 4:163–173. https://doi.org/10.4236/ojms.2014.43016

    Article  Google Scholar 

  48. 48.

    Synytsya A, Kim W, Kim S, Pohl R, Synytsya A, Kvasnicka F, Copikova J, Park J (2010) Structure and antitumour activity of fucoidan isolated sporophyll of Korean brown seaweed Undaria pinnatifida. Carbohydr Polym 81:41–48. https://doi.org/10.1016/j.carbpol.2010.01.052

    CAS  Article  Google Scholar 

  49. 49.

    Zhou AP, Robertson J, Hamid N, Ma Q, Lu J (2015) Changes in total nitrogen and amino acid composition of New Zealand Undaria pinnatifida with growth, location and plant parts. Food Chem 186:319–325. https://doi.org/10.1016/j.foodchem.2014.06.016

    CAS  Article  Google Scholar 

  50. 50.

    Boulom S, Robertson J, Hamid N, Ma Q, Lu J (2014) Seasonal changes in lipid, fatty acid, α-tocopherol and phytosterol contents of seaweed, Undaria pinnatifida, in the Marlborough Sounds, New Zealand. Food Chem 161:261–269. https://doi.org/10.1016/j.foodchem.2014.04.007

    CAS  Article  Google Scholar 

  51. 51.

    Nabti E, Jha B, Hartmann A (2017) Impact of seaweed on agricultural crop production as biofertilizer. Int J Environ Sci Technol 14(5):1119–1134. https://doi.org/10.1007/s13762-016-1202-1

    CAS  Article  Google Scholar 

  52. 52.

    Bloem E, Albihn A, Hermann L, Lehmann L, Sarvi M, Schaaf T, Schick J, Turtola E, Ylivainio K (2017) Contamination of organic nutrient sources with potentially toxic elements, antibiotics and pathogen microorganism in relation to P fertilizer potential and treatment options for the production of sustainable fertilizers: a review. Sci Total Environ 607-608:225–242. https://doi.org/10.1016/j.scitotenv.2017.06.274

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Graciela Custo, Luciana Cerchietti, and Roberto Servant for their important collaboration during the TXRF analysis (CNEA).

Funding

The authors are grateful to Universidad Nacional de San Martín (UNSAM) for its financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vanesa N. Salomone.

Ethics declarations

Conflict of Interest

The authors declare that they have not conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Salomone, V.N., Riera, M. Proximal Composition of Undaria pinnatifida from San Jorge Gulf (Patagonia, Argentina). Biol Trace Elem Res 196, 252–261 (2020). https://doi.org/10.1007/s12011-019-01905-1

Download citation

Keywords

  • Seaweed
  • Brown algae use
  • Mineral content
  • Arsenic
  • Potentially toxic elements
  • Food safety